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Abstract. In hearing-loss community, sign language is a primary
tool to communicate with people while there is communication gap
between hearing-loss people with normal hearing people. Continu-
ous sign language recognition, which can bridge the communica-
tion gap, is a challenging task because of the weakly supervised or-
dered annotations where no frame-level label is provided. To over-
come this problem, connectionist temporal classification (CTC) is
the most widely used method. However, CTC learning could per-
form bad if extracted features are not good. For better feature extrac-
tion, this work presents the novel self-attention-based fully-inception
(SAFI) networks for vision-based end-to-end continuous sign lan-
guage recognition. Considering the length of sign words differs from
each other, we introduce fully inception network with different recep-
tive field to extract dynamic clip-level features. To further boost the
performance, the fully inception network with an auxiliary classifier
is trained with aggregation cross entropy (ACE) loss. Then the self-
attention networks as global sequential feature extractor is used to
model the clip-level features with CTC. The proposed model is opti-
mized by jointly training with ACE on clip-level feature learning and
CTC on global sequential feature learning in an end-to-end fashion.
The best method in the baselines achieves 35.6% WER on validation
set and 34.5% WER on test set. It employs a better decoding algo-
rithm for pseudo label to do the EM-like optimization to fine tune
CNN module. In contrast, our approach focuses on the better feature
extraction for end-to-end learning. To alleviate the overfitting on the
limited dataset, we employ temporal elastic deformation to triple the
real-world dataset RWTH-PHOENIX-Weather 2014. Experimental
results on the real-world dataset RWTH-PHOENIX-Weather 2014
demonstrate the effectiveness of our approach which achieves 31.7%
WER on validation set and 31.3% WER on test set.

1 INTRODUCTION

Being one of the most significant methods of communication with
hearing-loss people, sign language is used by millions of people in
their daily life. However, the communication between hearing-loss
and normal hearing community is inconvenient due to the language
barrier. Thus, the sign language recognition (SLR) becomes mean-
ingful in terms of bridging the communication gap between hearing-
loss and normal hearing community.
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Figure 1: Illustration of weakly supervised CSLR problem where the
ground truth is not in frame level. Besides, the video could contain

noisy frames (the parts without label) which is not helpful for
recognition.

Sign language recognition could be categorized into two types,
i.e. isolated sign language recognition (ISLR) that recognizes seg-
mented sign words one by one and continuous sign language recog-
nition (CSLR) that recognizes a complete sentence of the sign lan-
guage [11]. The isolated sign language recognition falls into disad-
vantage of the need of dramatic amount of human labor to segment
the sign words from continuous sign videos or inaccurate temporal
segmentation. Thus, continuous sign language recognition is more
realistic. As for the CSLR, it is a weakly supervised problem where
the ordered ground truth is not fine-grained provided as shown in
Fig. 1. With the recent emergence of large scale dataset, the continu-
ous sign language recognition becomes prevailing, e.g. [2, 17, 5, 14].

In this work, we focus on the CSLR. In terms of CSLR, the exist-
ing frameworks consist of two parts: feature extraction and sequence
learning. For feature extraction, frame-level and clip-level features
are widely used for sign language videos. Early work [15] designed
fine-grained hand-crated features such as histogram of gradient
(HOG), scale invariant feature transformation (SIFT), hand tracking
patches and facial landmarks in frame level. Recent works [16, 18]
show the superiority of deep features to hand-crafted features for
CSLR. Among deep approaches, 2-D CNNs are the most used meth-
ods for extracting spatial features in frame level [2, 17]. However,
2-D CNNs only extract spatial feature without considering temporal
dependencies, which is usually solved by RNNs. Besides, recogni-
tion in frame level could confront of redundant and noisy frames in
the video which can affect optimization seriously. Thus, clip-level
feature extraction is necessary for sign language videos to downsam-
ple frames and filter out noisy information. Some works [22, 29] ap-
ply sliding window to split video into clips and then feed them into
3-D CNN as clip-level features. Although 3-D CNN is more natural
for spatiotemporal feature extraction, it is computationally expen-
sive and suffering from tuning the huge number of parameters. Other
work [4] extracts clip-level features by utilize 2-D and 1-D CNN sep-
arately, which obtains promising results with much less parameters to
tune compared to 3-D CNN. However, the abovementioned clip-level
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feature extractors use a fixed receptive field for temporal feature ex-
traction while the lengths of sign words could differ from each other.
If the receptive filed could match the lengths of sign words, it could
extract better features. Therefore, in this paper we consider (2+1)-
D fully inception as the clip-level feature extractor which possesses
dynamic receptive field and is helpful for sequence learning.

In terms of sequence learning, it aims at finding a mapping func-
tion from sequential features to the weakly supervised annotations.
Inspired by the strong capacity of encoder-decoder framework for
sequence-to-sequence problem, recent works [11, 22] consider it as
a way to solve CSLR. In addition, the connectionist temporal clas-
sification (CTC) [7] is firstly designed for speech recognition which
addresses ordered weakly supervised annotations the same as CSLR.
SubUNets [2] is one of the first RNN-CTC methods in an end-to-end
style to recognize German sign language. However, these methods
may fail to achieve good performance due to the limited contribution
of backpropagation to deep CNN feature extractor. The EM-like opti-
mization is introduced [4, 29, 22], where E-step optimizes the whole
sequence-to-sequence model and then generates fine-grained pseudo
labels, and M-step fine tunes the CNN with pseudo labels for better
features. In contrast, we introduce an end-to-end approach without
EM-like iterations to achieve better performance.

In this paper, we present our self-attention-based fully-inception
(SAFI) networks for the continuous sign language recognition and
achieve the best performance among baselines. To extract spatiotem-
poral features better and efficiently, we introduce the (2+1)-D fully
inception network with dynamic receptive field. In addition, an aux-
iliary classifier for clip-level feature learning with aggregation cross
entropy (ACE) [28] boosts the performance. In terms of sequence
learning, we employ the effective and efficient self-attention net-
works (SAN) [27] with CTC. Overall, the clip-level learning with
ACE and sequence learning with CTC are jointly trained together. In
short, the main contributions are listed as below:

• We develop an end-to-end architecture (SAFI) based on 2-D
InceptionV1, i.e. GoogLeNet, 1-D inception modules and self-
attention networks.

• To the best of our knowledge, we are the first to deploy (2+1)-D
fully inception network for dynamic clip-level feature extraction
and self-attention networks with CTC in order to obtain better per-
formance on CSLR. In addition, we use ACE to improve the clip-
level feature extraction.

• Experiments on RWTH-PHOENIX-Weather-2014, a large real-
life continuous sign language dataset, demonstrate the effective-
ness of our method.

The remainder of this paper is organized as follows. Section 2 lists
the related work. Section 3 introduces our SAFI framework. A series
of experiments is conducted and discussed in Section 4. Section 5
briefly draw the conclusion.

2 RELATED WORK
CSLR is a meaningful and challenging problem in real-world appli-
cations, which has attracted a lot of attention in the community of
artificial intelligence and machine learning. Since sign language is
one of the most efficient and widely used communication ways for
the deaf-mute, CSLR is helpful to alleviate the communication gap
between hearing-loss people with normal hearing people. A funda-
mental difficulty of CSLR is the hardness to capture visual semantics
for videos according their target labels because of weakly supervised
annotations problem.

To solve this problem, in literatures, researchers build frameworks
which primarily consists of two modules, feature extractor and se-
quence learning. Early works employ hand-crafted features or 2-D
CNN for frame-level features [15, 16, 18]. To match learned fea-
tures with their target coarse-grained labels, hidden markov model
(HMM) is applied. Inspired by the good performance of connec-
tionist temporal classification (CTC), SubUNets [2] is proposed with
three parts, i.e. cropped-hand video learning, full-frame video learn-
ing and combined learning. Specifically, the outputs of cropped-hand
learning and full-frame learning are fed into CaffeNet and then mod-
eled with BLSTM and learned with CTC respectively in frame level.
In addition, the outputs of BLSTM in those two parts are fed to an-
other BLSTM as combined learning with CTC. These methods have
shown great potential for CSLR while they could confront of redun-
dant and noisy frames in videos.

To emancipate the existing methods from noisy information, clip-
level feature extractors are introduced in CSLR. Guo et al. [8] splits
the video into several clips and proposes the two stream 2-D and
3-D CNNs with temporal convolutions as spatiotemporal feature ex-
tractor. Guo et al. [9] and Pu et al. [22] take the advantage of 3-
D CNNs and encoder-decoder architectures to gain the comparable
performance. Even though 3-D CNNs could have strong capacity of
video representation, it requires more computational power and con-
tains more parameters than 2-D CNNs, which makes it hard to train
on the limited dataset. The following work introduces (2+1)-D CNNs
to represent the video segments. Cui et al. [4] utilized GoogLeNet
with temporal convolutions as clip-level feature extractor to filter out
noisy frames and pretrained it with three-stage optimization. Firstly it
generates alignment proposal through the end-to-end learning using
VGG. Secondly, the generated alignment proposal helps fine tune the
feature extractor using GoogLeNet in clip level by KL-divergence.
Finally, the fine-tuned feature extractor along BLSTM is trained with
CTC. Such three-stage optimization is similar to the EM-like opti-
mization, which can lead to complex training process.

Besides, the above mentioned approaches base on RNNs to pro-
cess the sequential features, while RNNs cannot be parallelized and
may fall into local context. To learn global context and train the
model in a higher speed, self-attention networks (SAN) is introduced
with the famous neural machine model, i.e. transformer [27] which
gives up the conventional sequence model, i.e. RNNs, and achieved
the state-of-the-art results on both WMT2014 English German and
English-French translation tasks.

Therefore, in this paper, we introduce the novel self-attention-
based fully-inception networks to accurately extract features from
sign videos and train it in an end-to-end style.

3 THE PROPOSED METHOD

In this section, we present the novel self-attention-based fully-
inception (SAFI) networks for end-to-end continuous sign language
recognition. Our method adopts (2+1)-D fully inception network
and self-attention networks optimized jointly with clip-level feature
learning and sequence learning.

3.1 Network architecture

The architecture of our method is shown in Fig. 2. The presented ar-
chitecture consists of (2+1)-D fully inception network for clip-level
feature extraction from the input video frames and self-attention net-
works for sequential feature extraction.
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Figure 2: The self-attention-based fully-inception (SAFI) networks with CTC loss and ACE loss which is trained by one-stage end-to-end
learning for CSLR.

3.1.1 Clip-level feature extractor

Let x = {xt ∈ Rh×w×c}Tt=1 be the input sequence of a video with T
frames. The clip-level spatiotemporal representation consists of 2-D
InceptionV1 network, i.e. GoogLeNet [25], and stacked 1-D incep-
tion modules, denoted F2D-Incep and F1D-Incep respectively. With the
success in ILSVRC 2014 [23], GoogLeNet [25] shows its discrimi-
native power on spatial features. In terms of temporal feature learn-
ing, we consider the 1-D inception modules for its capacity of dy-
namic feature extraction. According to RWTH-PHOENIX-Weather-
2012 dataset [6], the lengths of isolated signs could vary around 10
instead of a fix length. To aggregate local context of video frames
and filter out noisy frames, it is suitable to apply convolutions with
equivalent receptive field to the temporal domain. Considering this
situation, we apply the stacked 1-D version of inception modules
which contain kernels with different size, i.e. different receptive field.
Therefore, the clip-level representation r = {rt ∈ Rd}T̂t=1 given the
input video frames x is as:

r = F1D-Incep(F2D-Incep(x)), (1)

where T̂ = T/4 due to downsampling by pooling layers with zero
padding on the time domain. The 1-D version of inception module
consists of temporal kernels that have 1, 3, 5 kernel size respectively
as shown in Fig. 3. With different size of kernels, the receptive field
of this 1-D inception module ranges from 1 to 5. The proposed ar-
chitecture contains two stacked layers of 1-D inception module so
that the receptive field ranges from 4 to 16. Thanks to the capacity
of spatiotemporal features, it is helpful for sequence learning with
CTC.

3.1.2 Global sequential feature extractor

The self-attention networks (SAN) [27] works as global sequential
feature extractor to compute the output states given the clip-level rep-
resentation r. The SAN allows to access sequential vectors at all time
steps so that it would not fall into local context. Besides, the SAN can
be parallelized due to the fully self-attention mechanism. Thus, the
SAN is taken as our sequence model which gives the sequential vec-
tors’ representation as follows:

h = {ht ∈ Rd}T̂t=1 = FSAN(r), (2)

where FSAN denotes the transformation of self-attention networks.
The self-attention networks consists of self-attention layers and feed-
forward layers. To understand it easier, the self-attention layer is con-
sidered as the weighted summation of sequence vectors so that the

representation at each time step contains information from global
context. The feedforward layer is two linear transformations with
ReLu activation in between for improving the capacity of SAN.
Thanks to self-attention mechanism, SAN enables the parallelization
and the access of global context at each time step.

3.2 Clip-level feature learning
Other than feeding clip-level feature to global sequential model di-
rectly, the presented architecture utilizes an auxiliary classifier for
clip-level feature learning to boost the recognition performance. With
the ability to classify the sign words in the clip-level, it helps the
global sequential feature extraction. The auxiliary classifier is added
after the clip-level feature extractor as below:

ỹ = {ỹt ∈ RK}T̂t=1 = {softmax(Wrrt)}T̂t=1, (3)

where ỹ denotes the probability distributions over K words, and
Wr ∈ RK×d is the linear projection matrix.

The auxiliary classifier enables the clip-level feature learning more
directly instead of backpropagation from sequence learning. To make
it possible, we employ the free-alignment aggregation cross entropy
(ACE) [28] which is designed for scene text recognition. Different
from the CTC (details in Section. 3.3), the aggregation cross entropy
doesn’t consider the alignment paths but to count the normalized
numbers of words that emerge in a sequence:

LACE(x, z) = −
|V |∑
k=1

N̄k log ȳk = −
|V |∑
k=1

N̄k log

T̂∑
t=1

ỹtk/T̂ (4)

where the normalized number of k-th sign word in the vocabulary
is N̄k = Nk/T̂ , Nk is the number of the sign word k in the true
sequential label z, and ỹtk denotes the output unit k at time t. In
addition, the number of the blank symbol in the vocabulary is the
difference of length of video clips and labels, i.e.Nblank = T̂ − L.

3.3 Global sequential feature learning
Given the extracted global sequential feature h from Eq. 2, the final
linear projection can produce the prediction for the continuous sign
language video:

y = {yt ∈ RK}T̂t=1 = {softmax(Whht)}T̂t=1, (5)

where y denotes the probability distributions over K words, and
Wh ∈ RK×d is the linear projection matrix.
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Figure 3: The illustration of clip-level feature extractor which contains stacked 1-D inception modules. The max pooling in red employs size 2
which downsamples the sequential features.

According to Eq. 5, ytk denotes the output unit k at time t. The
output yt represents the probability distribution over labels at time
t and each unit, i.e. ytk, is interpreted as the probability of the k-th
label at time t. Defines the probability over the vocabulary set V T of
length T sequences as follows:

p(π|x) =

T̂∏
t=1

ytπt
, ∀π ∈ V T . (6)

Continuous sign language recognition is weakly supervised classi-
fication in which not every output at different time step is labelled.
To solve this problem, we employ the connectionist temporal classi-
fication (CTC) [7] which considers the all possible alignments for
the sequence outputs and the labels. Therefore, we could define
the many-to-one mapping function B of a given labelling z, e.g.
B(a-aab) = B(-aa-a-b) = aab, where the ‘-’ is the blank symbol
in the vocabulary used to represent the empty clips and separate the
repeated words, and the sum of probabilities of all possible alignment
paths:

p(z|x) =
∑

π∈B−1(z)

p(π|x), (7)

which is calculated by HMM-like forward-backward algorithm for
feasibility and further details will not be discussed here. The objec-
tive function of CTC is defined as:

LCTC(x, z) = − log p(z|x) (8)

During training, the auxiliary ACE loss is taken as the regulariza-
tion term in our final optimization. Besides, L2 regularization is also
considered. Let λ1 and λ2 be the tradeoff coefficient of ACE loss
and L2 regularization respectively. Thus, the final objective function
of our model is:

L =
1

|D|
∑

(x,z)∈D

(LCTC(x, z) + λ1LACE(x, z)) + λ2‖θ‖22, (9)

where θ is the weighting parameters of the model. Based on the
Bayesian theory, the inferred labels ŷ can be formulated as follows,

ŷ = arg max
y∈V≤T̂

p(y|x).

During decoding stage, the labels are decoded by applying beam
search algorithm [12] which only searches top-B possible candidates
where the beam width B is a hyperparameter.

4 EXPERIMENTS
In this section, we will analyze the performance of our approach on
the prevail continuous sign language dataset.

4.1 Experimental setup
4.1.1 Dataset

We evaluate our method on a real-life German sign language dataset,
i.e. RWTH-PHOENIX-Weather 2014 [15] which is a prevail bench-
mark for continuous sign language task. To our best knowledge,
this is the largest public real-life dataset for sign language recogni-
tion. The dataset contains both full-frame and cropped-hand videos
of signers. The dataset is split to training set (5672 sentences, 10
hours), development set(540 sentences, 0.84 hours) and test set(629
sentences, 0.99 hours) by the release. Note that there exist words
which never occur in training set called out of vocabulary. The size
of vocabulary is 1232 including 1231 unique words in training set
and a blank symbol for CTC.

4.1.2 Evaluation metric

To evaluate our method and compare with other methods, we take
word error rate (WER) as the quantitative indicator which is the most
widely used in continuous sign language recognition task [4, 8, 22,
29]. Word error rate bases on edit distance which counts the mini-
mum number of operations, i.e. insertions (ins), deletions (del) and
substitutions (sub), required to transform inferred sequence to the
ground truth:

WER =
# insertions + # deletions + # substitutions

# words in ground truth
. (10)

Lower value of WER indicates better performance of continuous sign
language recognition.

4.1.3 Baselines

We aims at improving continuous sign language recognition in an
end-to-end style. The following representative methods, which are
widely use to tackle CSLR, are taken as our baselines.

1-Mio-H+CMLLR [15, 16] is an approach that demonstrates the
superiority of deep features to previous hand-crafted features [15]. In
[16], the 1-million-hands model is built to classify the hand shapes
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of cropped-hand video on frame level. The 1-million-hands model
bases on the HMM with EM algorithm where the visual model is re-
placed by GoogLeNet instead of gaussian mixture model (GMM) in
[15]. In our method, we don’t introduce complementary information
from 1-million-hands dataset.

Hybrid CNN-HMM [18] embeds the GoogLeNet into hybrid
HMM which is popular in automatic speech recognition. This
method takes cropped-hand video as inputs, utilize the best align-
ment results generated by 1-Mio-H+CMLLR and then train the
CNN-HMM in an end-to-end fashion.

SubUNets [2] is one of the first end-to-end frameworks pro-
posed for CSLR. SubUNets takes advantage of cropped-hand and
full-frame videos as two-stream inputs. It consists of two BLSTM-
CTC parts respectively on two-stream inputs and an extra BLSTM-
CTC part on both BLSTM layers. During testing, SubUNets utilize
a HMM-like topology with language model to decode the inference.

Staged-Opt [4] takes the advantage of three-stage optimization.
VGG and GoogLeNet with stacked temporal convolutions is taken
as feature extractor, and BLSTM with CTC is used for end-to-end
training. Staged-Opt firstly generates alignment proposal through the
end-to-end learning using VGG. Secondly, the generated alignment
proposal helps fine tune the feature extractor using GoogLeNet in
clip level. Finally, the fine-tuned feature extractor along BLSTM is
trained with CTC.

2D&3D-CNN+Stacked-1D-CNN [8] takes the advantage of two
stream CNN for CSLR. The 2-D and 3-D ResNets can extract fea-
tures in frame level and clip level respectively for recognition. After
extracting 2-D spatial features, it is fed to four-layer temporal con-
volutions to obtain spatiotemporal features. Then the spatiotemporal
features extracted from 2-D and 3-D ResNets are fused together. Fi-
nally, the fused features modeled by BGRU are trained jointly with
cross entropy, CTC and triplet loss in an end-to-end fashion.

3D-CNN+EncDec-CTC-DTW [22] focuses on learning for
weakly supervised data in different ways. The video is segmented
to several clips as the inputs of 3-D ResNets to extract spatiotempo-
ral features. This baseline employs the encoder-decoder architecture
with the CTC and soft-DTW imposed on encoder and decoder re-
spectively. The EM-like method is employed to fine tune the 3-D
ResNets for optimization.

3D-CNN+TEM+CTC [29] mainly improves EM-like optimiza-
tion to achieve better recognition performance. The dynamic pseudo
label decoding is proposed to generate better pseudo label during iter-
ation so that the training could have a correct direction. The network
architecture in [29] consists of Inception-3D [1], the BGRU and tem-
poral convolutions together. The whole architecture is trained with
CTC and EM-like optimization based on the dynamic pseudo label
decoding.

4.1.4 Implementation details

In our experiments, the input video frames are resized to 224× 224
for the GoogLeNet. All input frames are the full-frame data of
RWTH-PHOENIX-Weather 2014 instead of hand-tracked data. The
GoogLeNet [25] is initialized with weights pretrained on ILSVRC-
2014 [23]. The rest of parameters are initialized by he-normal [10]
initializer which is designed for networks with ReLu activation. We
take the output of Mix 5c layer in GoogLeNet as the input of 1-D
inception modules. The spatial dropout probability is set to 0.3. For
the stacked 1-D inception modules, we maintain the same settings of
Mix 5c layer in GoogLeNet. Both two-layer inception modules share
the same hyperparameters as shown in Tab. 1. Therefore, the out-

Figure 4: A illustration of how the elastic temporal scaling works for
changing speed of a video. The target index of frames is generated

from the transformation of second order polynomial that goes
through (0, 0), (T

2
, T

2
± µT ) and (T, T ), i.e. two curves index-1

and index-2 respectively.

puts of inception module would be the sequence vectors with 1024
dimension. For the self-attention networks, we employ the 1-layer
encoder of Transformer-big model as described in [27] but with fil-
ter size 2048 in the feedforward network. We choose λ1 = 2.5 and
λ2 = 4 × 10−5 as the weights of ACE loss and L2 regularization
respectively. We adopt ADAM [13] as the stochastic optimization
approach with a fixed learning rate to 5× 10−5, batch size to 1. Our
model is trained for 250,000 iterations and we evaluate our model
every 3,000 iterations. During inference, we set the beam width of
beam search to 10.

Table 1: The hyperparameters of 1-D inception module.

Branch Kernel Size # of filters

0 1 384
1 1 192
1 3 384
2 1 48
2 5 128
3 3 128

4.2 Overfitting reduction

At presents, the biggest real-life continuous sign language dataset
for recognition problem is RWTH-PHOENIX-Weather multi-signer
2014 [15]. However, 10-hour training set is not big enough to train a
deep neural network with millions of parameters. Therefore, overfit-
ting becomes the nightmare that limits the performance of our archi-
tecture.

Data augmentation is one of the simplest and most common
method to diminish overfitting [19]. Some image transformation
methods discussed in [3, 21] are not effective to reduce overfitting
on CSLR since the continuous movement pattern plays a more sig-
nificant role in recognizing sign language. The speed of unseen ges-
tures may differ from that of the training set. To improve the general-
ization of our architecture, we triple the RWTH-PHOENIX-Weather
multi-signer 2014 dataset by applying temporal elastic deformation
(TED) [20] in a way of changing the speed of videos. Different from
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(a) without overfitting reduction (b) with overfitting reduction

Figure 5: The CTC loss and WER on RWTH-PHOENIX-Weather
2014

inserting or dropping some frames directly, the elastic temporal scal-
ing can change the speed of the videos but keep the same length.
Temporal elastic deformation makes use of second order polyno-
mial curve fitting to change the position of video frames as shown
in Fig. 4. Denote the index of time step in a video by x, the target
index by y, a control point by (m,n) and the video length by T .
The temporal scaling function then is given by second order poly-
nomial curve fitting which goes through three coordinates (0, 0),
(m,n) and (T, T ). In practice, the control point (m,n) is selected as
(T
2
, T

2
±µT ), where µ is the coefficient that controls the deformation.

Different control points with µ ∈ {0.05, 0.10, 0.15, 0.20} are tested
to show how the temporal data augmentation affects recognition per-
formance as shown in Tab. 3. Except for TED, random cropping is
applied to each video during training.

In addition, dropout [24] has been a very effective tool to prevent
overfitting. Considering the limited dataset and similarity of video
frames, we apply spatial dropout [26] before low-level layers Mix 3b
and Mix 4b of GoogLeNet. The dataset contains only 9 signers with
the fixed background. Therefore, the GoogLeNet could get overfit-
ting easily on the similar frames. The spatial dropout works on the
feature channel of convolutions so that it could dropout some features
during training to alleviate overfitting.

As shown in Fig. 5, contrast experiment is made to demonstrate
the effectiveness of overfitting reduction. In contrast to that without
overfitting reduction, the CTC loss on test set will barely increase
after it reaches the lowest point if the model is trained with overfitting
reduction. Besides, overfitting reduction leads to a lower word error
rate.

4.3 Experimental results

Table 2: The ablation study of 1-D inception module and clip-level
learning with ACE on RWTH-PHOENIX-Weather 2014.

Methods VAL(%) TEST(%)

del/ins WER del/ins WER
InceptionV1+Conv1D-3 13.4/3.4 33.9 12.4/3.5 33.5

Fully-Inception 16.6/1.7 33.0 15.2/1.9 32.3
Fully-Inception+ACE 16.6/1.8 31.7 15.1/1.7 31.3

4.3.1 Effect of beam width

Beam search algorithm [12] is one of the most common methods to
decode inference for CTC. The beam search takes top-B candidates

Figure 6: The effect of beam width on SAFI performance.

during decoding at each time step since searching for all possible re-
sults is exponential and unrealistic. The computational complexity of
beam search isO(T ·B ·K log(B ·K)) where T is the length of input
sequence, B is beam width and K is the size of vocabulary. Larger
beam width can indicate better recognition result but more time for
decoding. Usually beam search can work well but we need to figure
out what beam width results in balanced performance on recognition
accuracy and speed. Therefore, we apply parameter search to find
the optimal beam width on our approach. As shown in Fig. 6, there
is only small improvement on WER when beam width is larger than
3. Consider the balance between WER and speed, we choose beam
width to 10 which produces good WER on both validation and test
set.

4.3.2 Ablation study

This part investigates the effectiveness of our modules, i.e. 1-D in-
ception module and clip-level learning with ACE loss. In the Tab. 2,
the ”InceptionV1+Conv1D-3” represents the training without ACE,
and the 1-D inception modules of the clip-level feature extractor
are replaced by 1-D convolutions with kernel size 3 and 1024 fil-
ters. The ”Fully-Inception” represents the training without clip-level
learning with ACE. The ”Fully-Inception+ACE” represents the full
version of our proposed method. To compare it fairly, the rest parts of
these settings are the same. By comparing ”InceptionV1+Conv1D-3”
with ”Fully-Inception”, the 1-D inception module contributes 0.9%
WER improvement from 33.9% to 33.0% on validation set and 1.2%
WER improvement from 33.5% to 32.3% on testing set. In addition,
the clip-level learning with ACE further boosts the performance to
31.7% WER on validation set and 31.3% WER on testing set. There-
fore, the fully inception feature extractor and clip-level feature learn-
ing with ACE contribute to the performance obviously.

4.3.3 Alignment and comparisons

Fig. 7 shows an example of self-attention heatmap and alignment
for our architecture from test set. The self-attention heatmap indi-
cates the correlation between clip queries and keys. According to
Fig. 7, the alignment result is related to the self-attention heatmap
where correlations, to some extent, indicate the period of appearance
of words.

In Tab. 3, we evaluate our method with the baselines on RWTH-
PHOENIX-Weather multi-signer 2014 dataset by WER5. From the
Tab. 3, the control point with µ = 0.15 as described in Section 4.2
allows our approach to achieve the best recognition performance. The
quantitative results demonstrate the effectiveness of our method on

5 We only list deletions, insertions and WER since WER is the summation of
deletions, insertions and substitutions.
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Table 3: WER of different methods on the RWTH-PHOENIX-Weather 2014. The ”Iterations” shows how many the EM-like iterations are
needed for optimization. ”-” means end-to-end training with no iteration needed. ”Hand”, ”Traj” (Trajectory) and ”Face” are the different

input sources extracted from the original full-frame dataset. Among the baselines, the methods proposed in [16, 18] take advantage of extra
supervision.

Methods Iterations Input Source VAL(%) TEST(%)

del/ins WER del/ins WER

1-Mio-H+CMLLR [15, 16] 3 Hand, Traj, Face 16.3/4.6 47.1 15.2/4.6 45.1
SubUNets [2] - Full Frame, Hand 14.6/4.0 40.8 14.3/4.0 40.7

Hybrid CNN-HMM [18] 3 Hand 12.6/5.1 38.3 11.1/5.7 38.8
Staged-Opt-init [4] - Hand 16.3/6.7 46.2 15.1/7.4 46.9

Staged-Opt [4] 3 Hand 13.7/7.3 39.4 12.2/7.5 38.7
2D&3D-CNN+Stacked-1D-CNN [8] - Full Frame 11.6/6.3 38.9 10.9/6.4 38.7
3D-CNN+EncDec-CTC-DTW [22] 4 Full Frame 12.9/2.6 37.1 13.0/2.5 36.7

3D-CNN+TEM+CTC [29] 5 Full Frame 9.5/3.2 35.6 9.3/3.1 34.5

Ours(SAFI, µ = 0.05) - Full Frame 16.7/1.5 32.9 16.0/1.7 32.9
Ours(SAFI, µ = 0.10) - Full Frame 15.2/2.1 32.1 13.9/2.1 32.2
Ours(SAFI, µ = 0.15) - Full Frame 16.6/1.8 31.7 15.1/1.7 31.3
Ours(SAFI, µ = 0.20) - Full Frame 19.1/1.4 33.3 17.1/1.5 32.2

Figure 7: An example of self-attention heatmap and alignment
between a video and its annotations. The x-axis is the clip index of

queries in SAN, and the y-axis is the clip index of keys in SAN. The
alignment parts without labels mean blank symbols in CTC.

continuous sign language recognition. Besides, the Fig. 7 indicates
that our approach benefits from clip-level features and the SAN.

Among the baselines, 1-Mio-H+CMLLR, Hybrid CNN-HMM
and SubUNets address sign video stream in frame level. The frame-
level features could contain redundant and noisy information which
can degrade the recognition performance. Staged-Opt extracts fea-
tures in clip level by applying temporal convolutions and pool-
ing layers to downsample sequential vectors. In addition, other ap-
proaches [8, 22, 29] split a video into several clips and feed them
into 3-D CNNs as clip-level features while 3-D CNNs are computa-
tionally expensive and contain more parameters, e.g. 3-D ResNet-18
takes about 33.2M parameters while 2-D InceptionV1 takes 5˜6M
parameters. These methods doesn’t consider the dynamic of length
of sign words. In contrast, our approach employs (2+1)-D fully in-
ception network to capture the dynamic temporal features to achieve
better performance. Different from the abovementioned methods, our
architecture is RNN-free network thanks to the self-attention net-
works (SAN) which makes training much faster.

Some approaches, i.e. 1-Mio-H+CMLLR, Hybrid CNN-HMM
and SubUNets, apply multiple input sources. Besides, 1-Mio-
H+CMLLR and Hybrid CNN-HMM take extra supervision from 1-
million-hands dataset. On the contrary, our method only take the
original full-frame video as input without extra supervision, which
shows the strong capacity of our proposed method. In addition, many
approaches introduce EM-like iterative optimization [15, 16, 18, 4,
22, 29] to optimize their CNN module to get the comparable perfor-
mance. Compared to Staged-Opt-init, the improvement of Staged-
Opt demonstrates the power of EM-like iterative optimization. In
contrast, our method is end-to-end learning without any iteration.
Overall, our competitive results benefit from better feature extrac-
tion and the strong capacity of our approach. We employ fully incep-
tion network to extract dynamic temporal features and utilize SAN to
learn global context instead of using RNNs. The Fig. 7 indicates the
effectiveness of SAN on CSLR. Furthermore, we boosts the perfor-
mance by adding an auxiliary classifier learned with ACE. Therefore,
our approach is able to achieve promising performance.

5 CONCLUSION

In this paper, we present a novel end-to-end approach for continuous
sign language recognition. Our approach takes the advantage of fully
inception, self-attention networks with CTC and clip-level feature
learning with ACE. The stacked fully inception modules are capa-
ble of extracting dynamic local temporal features and filter out the
noisy information. The self-attention networks with CTC can extract
global sequential features effectively. Furthermore, the clip-level fea-
ture learning with ACE boosts the recognition performance. Exper-
iments on the largest real-life dataset RWTH-PHOENIX-Weather
multi-signer 2014 demonstrate the effectiveness of our approach.
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