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Abstract. Graph convolutional network (GCN), with its capabil-
ity to update the current node features according to the features of
its first-order adjacent nodes and edges, has achieved impressive
performance in dependency capturing. But some important nodes
from which we should figure out the dependencies are not first-order
reachable, which calls for multi-layer GCNs for indirect relevance
capturing. In this paper, we propose a novel weighted graph convo-
lutional network by constructing a logical adjacency matrix which
effectively solves the feature fusion of multi-hop relation without
additional layers and parameters for relation extraction task. And
we apply an Entity-Attention mechanism to enrich the entity pairs
with more focused semantic information. Experimental results on
TACRED and SemEval 2010 task 8 show that our model can take
better advantage of the structural information in the dependency tree
and produce better results than previous models.

1 INTRODUCTION
Relation extraction aims to capture semantic relations between
marked entity pairs in unstructured sentences, which plays a signif-
icant role in natural language processing downstream tasks, such as
question answering [27], relation inference [31], biomedical knowl-
edge discovery [19], etc. Extracted relation usually occurs between
two or more entities of a certain type (e.g. Person, Organisation, Lo-
cation) and falls into a number of semantic categories (e.g. married
to, employed by, lives in). A good relation extraction model facili-
tates an in-depth semantic understanding of the text content.

Most existing relation extraction models are based on deep learn-
ing such as RNN, CNN and their improved models. A relation extrac-
tion model takes the text sequence as input, obtains the word-level
representation or sentence-level semantic representation through a
specifically designed feature extractor, and finally acquires the re-
lation between entities through a classifier. When extracting the re-
lation between entities, predicates are usually of great significance,
which means that long distance between entity and predicate is very
likely to cause key information loss. To handle this problem, depen-
dency trees [9] were proposed to capture long-distance semantic de-
pendencies and simplify complex sentences for core content extrac-
tion. The root of the dependency tree is mostly the predicate of the
sentence, and the rest of the main words are centered around the pred-
icate, shown as Figure 1.

For better capturing of the most relevant information, early mod-
els apply neural networks to the shortest dependency paths between
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Figure 1: Dependency trees of two samples in TACRED. The curve denotes
dependency relation, and the type of the dependency relation is marked on
the curve, the predicate is the root of the dependency tree under normal con-
ditions, and the bold red words are entities from which to extract a certain
relation in a given sentence.

entities. SDP-LSTM [25] applies LSTM to the sequence of words in
the shortest path, DepNN [13] applies RNN to extract subtree fea-
tures and CNN to extract shortest path features. And Miwa et al. [16]
reduced the dependency tree to subtrees under the lowest common
ancestor (LCA) between entities. However, these models, running
directly on a dependency tree and having difficulty in parallelization,
are computationally inefficient because it’s often not easy to align
trees for efficient batch training.

There are many non-Euclidean data structures like dependency
tree on which the performance of CNN and LSTM is very limited be-
cause they are often used to process Euclidean data. Kipf and Welling
[10] proposed a graph convolutional network (GCN) which makes
non-Euclidean data processing possible and has very broad prospects
in applications that depend on dependency information modality.

As for relation extraction task, Zhang et al. [29] proposed an exten-
sion of GCN, which can be effectively paralleled on any dependency
tree structures. They also proposed a pruning strategy that preserves
some important words (e.g. ”not”) that are not on the shortest path be-
tween two entities. Besides, GCN-based models have also achieved
breakthroughs in other NLP tasks, such as Semantic Role Labeling
[15], Neural Machine Translation [1], Multi-Document Summariza-
tion [26].

However, the efficiency and effectiveness of existing GCN-based
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models are limited in only establishing the first-order4 model de-
pendence between words. Some important words (e.g. ”23” in Fig-
ure 1) are linked with their predicate indirectly. So it is necessary
to stack multi-layer GCN if k-order neighborhood dependence is
needed. Empirically, neural networks with deep structures and more
parameters can produce better experimental results. Although GCN
can have significant advantages over other methods, it has some fun-
damental drawbacks. Li et al. [12] showed that GCN brings potential
concerns of over-smoothing with many convolutional layers.

To address these problems, we propose a novel weighted graph
convolutional network model (WGCN) for relation extraction. In the
proposed model, we add virtual edges to the dependency tree to con-
struct a logical adjacency matrix (LAM), which can directly figure
out k-order neighborhood dependence with only 1-layer WGCN. We
utilize residual blocks [7] between layers of WGCN to alleviate the
vanishing gradient. We also apply an Entity-Attention(EA) mech-
anism to enrich entity representation with more focused between-
words semantic information, which facilitates relation extraction of
entity pairs.

We evaluate the performance of model on two datasets: the pop-
ular SemEval 2010 Task 8 dataset [8] and the more recent, larger
TACRED dataset [30]. Our model achieves a delightful performance
on both datasets without loss of computational efficiency. Our code is
available at https://github.com/LILI-ZHOU/EA-WGCN.

Our main contributions are summarized as follows:

• We propose a novel Weighted Graph Convolutional Network
(WGCN) model that can obtain k-order neighborhood informa-
tion on only 1-layer network without additional network param-
eters, and we alleviate the vanishing gradient problem in graph
network by introducing residual blocks.

• We propose Entity-Attention mechanism (EA) to enrich entity
representation with more relevant information.

• Finally, we analyze the highlights and complementary effects of
LSTM, attention mechanism and GCN in natural language pro-
cessing.

2 RELATED WORK

The methods of relation extraction can be divided into four cate-
gories: supervised, semi-supervised, weakly supervised and unsuper-
vised. Methods for Supervised relation extraction are mainly feature-
based and kernel-based. Zhou et al. [4] used SVM as a classifier to
study the influence of lexical, syntactic and semantic characteristics
on relation extraction task. The supervised method requires man-
ual annotation for a large amount of training data, which is time-
consuming and effort-wasting. Hence, the relation extraction meth-
ods based on semi-supervision, weak supervision and unsupervision
were proposed to solve the problem of the arduous manual annotation
works. Brin S [2] presented a technique to grow the target relation
from a small sample by taking advantages from the duality between
sets of patterns and relations. Craven et al. [3] first proposed a weakly
supervised method to extract structured data from texts and build a
biological knowledge base. Hasegawa et al. [5] started the pilot work
with an unsupervised method for extracting relation between enti-
ties. These classical methods have the problem of error propagation
in feature extraction, which greatly undermines the performance of
relation extraction.

4 “first-order” means the neighbor nodes to which the target node only need
1 step, and ”k-order” requires steps within distance k.

With the popularity of deep learning, scholars gradually apply
deep neural networks to relation extraction tasks [11]. Compared
with the classical relation extraction methods, the main advantage of
the deep-learning-based relation extraction method is that the neu-
ral network model can automatically learn sentence features with-
out complex feature engineering. Originally, the relation extraction
methods based on deep learning tend to choose structures such as
RNN, CNN and their improved models. With the appearance of
graph convolutional network (GCN) [10], some GCN-based models
have come into being.

Relation extraction model based on RNN. The method of rela-
tion extraction based on RNN model was first proposed by Socher
et al. [22] in 2012. This method assigns a vector and a matrix to
every node in a parse dependency tree: the vector captures the in-
herent meaning of the constituent, while the matrix captures how it
changes the meaning of neighborhood words or phrases. Hashimoto
et al. [6] proposed a recursive neural network (RNN) model based
on syntactic tree in which POS tags, phrase categories and syntac-
tic head are also adopted. Traditional RNN has difficulty in dealing
with long-term dependence, while LSTM (an advanced RNN struc-
ture with long short term memory) solves these problems by adding a
cell state and three gated operations. Xu et al [25] leverages the short-
est dependency path (SDP) between two entities and applies multi-
channel LSTM unites to pick up heterogeneous information along
the SDP.

Relation extraction model based on CNN. Zeng et al [28] exploit
a convolutional deep neural network to extract lexical and sentence-
level features. Their method takes all of the word tokens as input
without complicated pre-processing. Xu et al [24] proposed a relation
extraction model of convolutional neural network based on depen-
dency tree. The difference between this model and the CNN model
of Zeng et al [28] is that the input text pass the dependency tree in
the former model.

Relation extraction model based on GCN. Kipf and Welling
[10] presented a GCN model for semi-supervised learning on graph-
structured data that is based on an efficient variant of convolutional
neural networks which operate directly on graphs. Zhang et al. [29]
applied GCN to the dependency tree for relation extraction, which
pools information over arbitrary dependency structures efficiently in
parallel. They also created a pruning strategy to the input trees by
keeping words immediately around the shortest path between the two
entities where may lies a relation.

Our model is also based on GCN, but existing GCN, only able to
obtain the first-order neighborhood information directly, needs multi-
layer structure to figure out k-order neighbor information indirectly.
Considering this limitation, we build a novel Weighted Graph Con-
volutional Network (WGCN) by adding virtual edges on the graph
structure, which can directly obtain the k-order neighborhood infor-
mation. In this way, while retaining the inherent advantages of GCN,
the accuracy of the model is improved without losing simplicity.

3 MODEL

We first define the task of relation extraction. χ= [x1,x2 . . . xN ] rep-
resents a sentence, where xi is the ith token, N is the length of χ.
And χs = [xs1 . . . , x|χs|], χo = [xo1 . . . , x|χo|] denote the subject
entity span and the object entity span respectively in the sentence.
Given χ, χs and χo, relation extraction is to make a prediction of the
relation r ∈ R between the two entities. R represents a predefined
relation set.

In this section, we will introduce our novel model (EA-WGCN)
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Figure 2: Relation extraction with EA-WGCN. The left part shows the overall architecture of EA-WGCN, and the right part shows the logical adjacency matrix
for the WGCN. The model is composed of four modules. The sentences are firstly fed into the Sequence encoding module to get contextual and sequential
representation as input for WGCN. The Sequence encoding module contains an embedding layer and a Bi-LSTM layer. In the WGCN layer, an advanced logical
adjacency matrix was constructed by adding virtual edges on the sentence dependency tree. The final sentence representation and entity representation are
obtained through Entity-Attention mechanism and max-pooling in the Representation fusion module, which are concatenated as the input of the final relation
classifier. The details of Logical Adjacency Matrix is demonstrated in the right part, the following is a sentence dependency tree. The blue solid edge represents
the direct dependency of adjacent nodes in the sentence. When two nodes are reachable throw an accessible path but not directly connected by a solid edge, we
add a red dotted edge between them to represent an indirect dependency. The number on all edges represents the shortest path length between nodes, which is
reflected in the elements of the logical adjacency matrix.

with a weighted graph convolutional network structure and an Entity-
Attention mechanism, which can better capture the structural infor-
mation in the dependency tree of a sentence and produce a better
result for relation extraction task. Figure 2 illustrates the overview
of the model. The model mainly consists of four modules including
(1) Sequence encoding module (2) Dependency propagation module
(3) Representation fusion module (4) Relation classification module.
The innovation of our model is mainly reflected in the second and
third modules.

3.1 Sequence Encoding Module

This module mainly consists of an embedding layer and a bidirec-
tional LSTM layer (Bi-LSTM). In embedding layer, the word embed-
ding, NER label embedding and POS tag embedding of each token
are concatenated as follows:

et = [et
word : et

ner : et
pos] ∈ Rm (1)

m = dword + dner + dpos (2)

where dword, dner , dpos denote the dimension of word, NER,
POS embedding, et is the concatenated representation vector of a
token at time step t. The vectors of all time steps are serialized into
a 2-D matrix E = [e1, e2, . . . , eN ] ∈ RN×m. The vectors in E are
merely independently juxtaposed word-level representation with lit-
tle sentence-level information. To obtain contextual semantic rep-
resentations, we concatenate both the forward LSTM state and the
backward LSTM state in a Bi-LSTM layer, shown as follows:

−→
ht =

−−−−→
LSTM(xt, ht−1) ∈ Rdl (3)

←−
ht =

←−−−−
LSTM(xt, ht+1) ∈ Rdl (4)



ht= [

−→
ht :
←−
ht ] ∈ R2dl (5)

where dl denotes the LSTM hidden dimension, and


h1,



ht,. . . ,



hN

as the output of sequence encoding module has already contained
bidirectional semantic feature.

3.2 Dependency Propagation Module
Graph convolutional network. Before introducing this module,
we review Graph Convolutional Network (GCN) [10], which pro-
vides a new method for processing graph-structured data. Given
G = (V,E),the input of GCN is:

• A feature matrix X ,whose shape is N × F 0,where N represents
the number of nodes in the graph, F 0 is the input feature dimen-
sion of each node.

• A N ×N adjacency matrix A of this graph, where Aij=1 if there
is an edge going from node i to node j.

Hence, the output of l-layer GCN is written as:

H(l) = σ(AH(l−1)W (l) + b(l)) (6)

where H0 = X , W l is a linear transformation, bl is a bias term,
and σ is a nonlinear function (e.g.,RELU).
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Figure 3: Comparison of WGCN with vanilla GCN. Take the node a of the
up-left part as an example. At the beginning, node a only contains its own
feature. After 1-layer GCN, as shown in the up-right part, node a acquires the
features of its neighborhood nodes c, h and i. At the same time, node c is also
updated by the features of its neighbors, so do node h and i. And after 2-layer
GCN, as depicted in the down-right part, node a gets the updated features of
its neighborhood nodes c, h and i again. Since the features of nodes c, h and
i already contain the features of their neighbors after the previous GCN, node
a indirectly obtains the features of the neighborhood nodes of node c, h and i.
Thus, after 3-layer GCN, node a is updated with information from all nodes
directly and indirectly connected to it, which is vulnerable to over-smoothing.
For WGCN, we add virtual edges between node a and nodes indirectly con-
nected to it. Hence, after 1-layer WGCN, node a can obtain the features of all
nodes with paths to it, shown as the down-left part.

On the relation extraction task, we parse a dependency tree as a
graph structure on the sentence in which each token represents a
node. And if there is a dependency between words, there is an edge
between corresponding nodes. After each graph convolutional oper-
ation, information of each node can be updated by fusing the feature
of its neighborhood nodes.

Weighted graph convolutional network. However, feature fusion
on 1-layer GCN only represents first-order neighborhood depen-
dency. When k-order neighborhood feature is required for further
relation extraction work, it can only be indirectly acquired through
multi-layer GCN structure, which is time-consuming and has high
tendency of over-smoothing, shown as Figure 3.

To avoid this limitation and realize the multi-hop feature fusion
in a single layer graph network, we propose a Weighted Graph Con-
volutional Network(WGCN). In the proposed model, we add virtual
edges to the dependency tree to construct a logical adjacency matrix
(LAM), which can directly figure out k-order neighborhood depen-
dence with only 1-layer WGCN. The algorithm of constructing LAM
is shown as Algorithm 1.

Algorithm 1 Obtain Logical Adjacency Matrix (LAM )
Input: T : dependency tree of sentence; N : the sequence length;
Output: LAM

1: Initial LAM ∈ RN×N , all elements in LAM are zero;
2: Traverse each node i from the root of T:
3: Traverse all nodes j in the subtree whose root is node i;
4: Compute the distance d between node i and node j;
5: Set LAMij =Weight(d)

The Weight function in the Algorithm 1 is used to calculate the
weight coefficient of feature fusion between nodes. The shorter the
distance between nodes, the greater the weight, and vice versa. The
fusion weight coefficient between adjacent nodes is 1, meaning the
maximum information fusion weight. In our model, we choose the
Weight function defined as:

Weight(d) =
1

ed−1
(7)

Where e is the Euler’s number. Then we can obtain a new prop-
agation formula for the fusion of dependent information shown as
follows:

hi
(l) = σ(

N∑
j=1

L̃AM ijhj
(l−1)W (l)/di + b(l)) ∈ Rdw (8)

where hi0 =


hi in Equation 5, L̃AM = LAM + I ,which means

all nodes in dependency tree added self-loop connection, and di =∑N
j=1 L̃AM ij is the degree of node i, dw denotes the WGCN hidden

size, and W (l) ∈ R2dl×dw .
In this way, 1-layer WGCN can integrate the k-order neighbor-

hood information directly without extra parameters introduced. The
gradient of the graph network gradually disappears as the depth in-
creases, which makes the receptive field of WGCN very likely to pro-
duce a lot of noise in the process of information transmission. Hence,
the residual blocks 5 are built to alleviate this problem in WGCN.
Through this module,we can obtain the dependency representation
of sentence.

3.3 Representation Fusion Module
To represent the subject entity and the object entity in the sentence
with more focused semantic information, we propose to design an
Entity-Attention mechanism(EA) under which an entity can capture
its correlated parts of sentence. Firstly, the entity representation with-
out attention is defined as:

h′entity = maxpool[H(L)
es:ee] (9)

whereH(L) = [h1
(L), h2

(L), . . . , hN
(L)] is matrix representation

of sentence after L-layer WGCN, es indicates the start subscript of
the entity and ee indicates the end subscript. The maxpool function
reduces the representation from 2-dimension to 1-dimension as dw.
Then the final entity representation with Entity-Attention is given by:

a = softmax(H(L)h′entity) (10)

hentity = maxpool[(aH(L))es:ee] (11)

where a is a vector of entity-to-sentence attention weights. Then
the final representation hs, ho of χs,χo can be obtained from Equa-
tion 9,10,11, which are already enriched with focused information.
And we also obtain the sentence representation vector directly by:

hsent = maxpool[H(L)] (12)

Finally, we integrate all the features by concatenating the final rep-
resentations of sentence and entities as follows[21]:

hout = [hsent;hs;ho] (13)
5 We use the output of the last-layer WGCN directly as the output of the

dependency propagation module.
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3.4 Relation Classification Module
In this module, the final fusion representation containing abundant
sequential and dependency information of the original text is fed into
a feed-forward neural network with a softmax operation in which we
can get a probability distribution over relations.

This model can be trained by backpropagation and the cross en-
tropy function is used as the loss function of the model during train-
ing. Our competitive advantage lies in that we have achieved better
performance without extra parameters and complex structure.

4 EXPERIMENT
4.1 Datasets
We evaluate the performance of our model on two relation extraction
datasets: TACRED and SemEval 2010 Task 8.

• TACRED. The TACRED dataset 6 is a large-scale relation ex-
traction dataset consists of 106,264 samples and 42 relation
types(including 41 defined types and a special relation label ’no
relation’ if no defined relation is held) [30]. The content is mainly
the text corpus of newswire and TAC Knowledge Base Population
(TAC KBP) challenges. In each TACRED example, the follow-
ing annotations are provided: the spans of the subject and object
mentions; the types of the mentions (among 23 fine-grained types
used in the Stanford NER system); the 42 types of relation held
between the entities.

• SemEval 2010 Task 8. The SemEval 2010 Task 8 is a public
dataset which contains 10,717 instances with 9 relations and a spe-
cial ’Other’ class which means that the relation does not belong to
any of the nine relation types. To parse this original data, we use
Stanford CoreNLP [14] to generate dependency trees, POS, and
NER sequences.

For both datasets, we use pre-trained 300-dimensional GloVe [18]
to initialize word embedding, and randomly initialized POS embed-
ding and NER embedding with 30 dimensions.The Bi-LSTM hidden
size is set to 100, and WGCN hidden size is set to 200, which ef-
fectively enables residual computation. And we set the dropout rate
0.5, prune k = 1 [29]. For TACRED, We choose 2 layer WGCNs,
initializing learning rate 1.0 with a decay rate 0.9. For SemEval, we
set 3 layer WGCNs, 0.5 learning rate with a decay rate of 0.95. For
both datasets, we trained our model for 150 epochs.

4.2 Evaluation
We use precision(P), recall(R) and F1 score(F1) to evaluate our mod-
els.

We follow the convention and report the official micro-averaged
F1 scores on TACRED dataset. The official evaluation metric uses
micro-averaged F1 over instances with proper relationships (exclud-
ing the ”no-relation” type).

On SemEval, we test the model performance using the official
scorer in terms of the macro-F1 score over the nine relation pairs.
However, the ”other” class is not taken into consideration when we
compute the official measures.

By the way, ’micro’ means to calculate metrics globally by count-
ing the total true positives, false negatives and false positives. The
corresponding elements (TP, FN, FP, TN) in each confusion matrix

6 https://nlp.stanford.edu/projects/tacred/

were averaged respectively, and then the micro-precision and micro-
recall were obtained to calculate micro-F1.While “macro” means to
calculate metrics for each label, and find their unweighted mean. Pre-
cision and recall are calculated for each confusion matrix respec-
tively, so as to obtain macro-precision and macro-recall, and then
macro-F1 is calculated.

4.3 Results
TACRED. The experimental results of TACRED in Table 1 show
that our model EA-WGCN outperforms all compared models. We
mainly compare our model with the following four types of models:
1) Traditional relation extraction model: a logistic regression model
(LR), which combines dependency tree information with other lex-
ical information. 2) CNN-based relation extraction model: Nguyen
et al. [17] depart from these traditional approaches with compli-
cated feature engineering, and apply a Convolutional Neural Net-
work model (CNN), that automatically learns features from sen-
tences through multiple window sizes for filters. 3) LSTM-based
relation extraction model: Position-aware LSTM (PA-LSTM) [30]
which combines a LSTM Sequence model with a form of entity
position-aware attention; Shortest Dependency Path LSTM (SDP-
LSTM) [25] which applies LSTM to the shortest dependent path
between entities; tree-structured LSTM (tree-LSTM) [23], a gener-
alization of LSTMs to tree-structured network topologies. 4) GCN-
based relation extraction model: contextualized graph convolutional
network (C-GCN) presented by Zhang et al. [29], which applies
graph convolutional network in the pruned dependency tree.

By observing the experimental results, we find that our model im-
proved at least 1.2 F1 compared with other models. CNN achieves
the highest precision score 75.6 and a lowest recall score 47.5, which
leads to a lowest F1 score. We hypothesize that CNN may tend to
precisely classifying the defined relations while make misclassifi-
cation between defined and undefined types. And our EA-WGCN
model obtains the highest recall score 64.8 and the highest F1 67.6.
In particular, compared to the C-GCN, our model has a certain im-
provement in precision score, recall score and F1 score without extra
layers and parameters. We also run an ensemble of our EA-WGCN
model by averaging the softmax results of 5 randomly initializations,
which improves the F1 score by 1%.

System P R F1

LR++ 73.5 49.9 59.4
CNN++ 75.6 47.5 58.3
SDP-LSTM++ 66.3 52.7 58.7
Tree-LSTM+ 66.0 59.2 62.4
PA-LSTM++ 65.7 64.5 65.1
C-GCN+ 69.9 63.3 66.4

Our Model(EA-WGCN) 70.8 64.8 67.6
Our Model(ensemble) 71.3 66.1 68.6

Table 1: Results on TACRED. Comparative experimental results are mainly
reported from Zhang et al. + remarks result quoted from [29],and ++ re-
marks result quoted from [30].

SemEval 2010 Task 8. To demonstrate the versatility of our pro-
posed model, we have also conducted experiments on another
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dataset——SemEval. We experimented mainly with some depen-
dency models, shown as Table 2. SemEval dataset is much smaller
than TACRED dataset, but our model still obtained F1 85.1 and out-
performed any other dependency models. In the same ensemble ap-
proach, we elevated the F1 score of our single EA-WGCN model to
85.4.

System F1

SVM+ [20] 82.2
DepNN+ [13] 83.6
SDP-LSTM+ [25] 83.7
SPTree+ [16] 84.4
C-GCN++ 84.4
C-GCN+ [29] 84.8

Our Model(EA-WGCN)
85.1
85.4∗

Table 2: Results on SemEval.+ indicates results are reported in the original
papers in which the methods are proposed, ++ indicates results are generated
with our implementation. The underline indicates that results produced from
single models, and ∗ represents results of single models ensemble.

5 ANALYZE & DISCUSSION

5.1 Ablation study

To prove the contribution of each component of our model, we ran
ablation studies on them. On TACRED dataset, we used an experi-
ment in which EA-WGCN model scored F1 67.9 on the validation
set as the standard. During the ablation experiment, the parameters
of each experiment were initialized from the same setting of random
seeds, so as to ensure the fairness of the experiment. This result is
shown in Table 3. We find that 1) When LAM is replaced by the or-
dinary adjacency matrix, F1 score drops by 0.5, 2) When we remove
Entity-Attention mechanism, the score of F1 drops by 1.0, 3) When
we remove the residual block, F1 score drops by 1.1, which proves
that the residual block can effectively alleviate the vanishing gradient
problem in deep graph network, 4) When we remove the Bi-LSTM
layer, F1 score drops by 6.0. 5) When we change the LAM to unit
matrix I7, F1 score drops by 2.4.

Model Dev F1

EA-WGCN 67.9
-Logical adjacency matrix (LAM) 67.4
-Entity attention (EA) 66.9
-Residual block 66.8
-Bi-LSTM layer 61.9
-WGCN layer 65.5

Table 3: Aablation study on TACRED

7 At this point, the WGCN layer down grades into a full connection layer.

5.2 Effect of Logical Adjacency Matrix

In our study, we insisted that the Logical Adjacency Matrix (LAM)
can capture k-order neighborhood information with only 1-layer
GCN, without adding additional layers and parameters. In order to
prove the effectiveness of LAM in relation extraction model, we con-
ducted a comparative experiment between EA-WGCN (our model)
and EA-GCN in which the LAM in our model is replaced by an or-
dinary adjacency matrix. Convergence results under different Adja-
cency Matrix strategies are shown in Figure 4. Our model quickly
converged to a virtually better solution. EA-GCN also performed
quite well, albeit with a slower converge rate than our model. In this
case, we also compare the best dev F1 scores between EA-GCN and
our model, which is shown in figure 5. In terms of final best F1 score,
our model outperformed the EA-GCN by at least 0.5 F1 score and
reached a peak around the time of the 40th epoch. The above has
proved that LAM can effectively capture k-order neighborhood fea-
tures and obtain better prediction results in relation extraction task.

5.3 Effect of Entity-Attention

It is enlightening to analyze the significance of each sentence word
in determining entity representation for relation extraction between
entities.

Figure 5 manifests the influential extent of each word in the sen-
tence on a given entity. The color depth indicates the importance de-
gree of the weight in attention vector a in Equation 10, the darker
the more important. Take the first sentence for example, the rela-
tion between the subject (”The Federation”) and the object (”1994”)
is ”org:founded”. We observed that the Entity-Attention mechanism
leads the two entities to pay more attention to the phrase ”founded
in 1994”. Similarly, the entities of the second sentence are more con-
cerned with the phrase “12500 employees in”, which leads our model
to extract the relation ’ org:number of employees/members ’. Obvi-
ously Entity-Attention can help to get importance-guided entity rep-
resentation from the whole sentence dynamically.

5.4 Analyze of LSTM & Attention & GCN

In natural language processing models based on deep learning,
LSTM and attention mechanism are widely used. By concatenating
forward and backward LSTM state, each word in the text can obtain a
representation with contextual semantics. Attention mechanism can
help to focus more on important parts and less on other unimportant
factors. In our model, entities are used as query vector to assign at-
tention weight to each word in a sentence through Entity-Attention
mechanism, which plays a role of global observation. The latest GCN
model based on sentence dependency tree allows each word to di-
rectly capture the information of its dependent words even far away
from it in the original text. Therefore, LSTM, attention mechanism
and GCN have different emphasis on feature extraction.Shown as
Table 3, all three feature extractors contribute F1 score to our model
, which illustrates the complementary effects of LSTM in sequen-
tial information capturing, attention mechanism in global relevance
obtaining, and GCN in dependency acquiring. Combining LSTM, at-
tention mechanism and GCN enriches word-level and sentence-level
representation with more abundant information to capture as much
semantic information as possible, which can achieve more accurate
relation extraction.

Besides, LAM in our WGCN is an N*N matrix. And for each
word, it calculates a fusion weight coefficient for other words, and
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Figure 4: Performance of GCN-based models under different Adjacency Matrix strategies. For each model we show the training loss and best dev F1 score on
the TACRED train and dev set. Our model outperforms EA-GCN without a logical adjacency matrix.

Figure 5: Entity-Attention Visualization. The color depth expresses the
importance degree of the weight in attention vector a in Equation 7.
From left to right, the relations of the four examples in TACRED are:
(1) org:founded; (2) org:number of employees/members; (3) per:title; (4)
org:city of headquarters. On the left of each strip is a complete sentence, with
the subject entity and object entity on.

the sum of the weights are normalized to 1, which looks very similar
to the attention mechanism. But in fact, LAM only contains relevant
information of words which are directly or indirectly reachable in
the sentence dependency tree, which is very helpful for relation ex-
tract task, while attention mechanism focuses on global relationships
among all words in the sentence.

6 CONCLUSION
In this paper, we introduce the novel Weighted Graph Convolutional
Network with Entity-Attention mechanism (EA-WGCN) for relation
extraction. In WGCN, we construct a logical adjacency matrix by
adding virtual edges between nodes that have paths but are not di-
rectly adjacent to each other in the dependency tree. Such opera-

tions can directly obtain k-order neighborhood information through
only 1-layer WGCN, which enables multi-hop relation with a sim-
ple structure. By introducing residual blocks between WGCN lay-
ers, the vanishing gradient problem is effectively alleviated. And
Entity-Attention mechanism enables entity representation to obtain
importance-guided semantic information from sentences. Experi-
mental results on both TACRED dataset and SemEval 2010 task 8
dataset show that EA-WGCN can make a more comprehensive use of
the structural information in the dependency tree and produce better
results than previous models. We also find the complementary effects
of LSTM in sequential information capturing, attention mechanism
in global relevance obtaining, and GCN in dependency acquiring.
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