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Abstract. Human pose estimation is a fundamental yet challeng-
ing task in computer vision. Although deep learning techniques have
made great progress in this area, difficult scenarios (e.g., invisible
keypoints, occlusions, complex multi-person scenarios, and abnor-
mal poses) are still not well-handled. To alleviate these issues, we
propose a novel Spatial Preserve and Content-aware Network (SPC-
Net), which includes two effective modules: Dilated Hourglass Mod-
ule (DHM) and Selective Information Module (SIM). By using the
Dilated Hourglass Module, we can preserve the spatial resolution
along with large receptive field. Similar to Hourglass Network, we
stack the DHMs to get the multi-stage and multi-scale information.
Then, a Selective Information Module is designed to select relatively
important features from different levels under a sufficient consider-
ation of spatial content-aware mechanism and thus considerably im-
proves the performance. Extensive experiments on MPII, LSP and
FLIC human pose estimation benchmarks demonstrate the effec-
tiveness of our network. In particular, we exceed previous methods
and achieve the state-of-the-art performance on three aforementioned
benchmark datasets.

1 Introduction

Human pose estimation aims to locate the person parts, such as key-
points on the arms, legs and face. It is a fundamental yet challeng-
ing task in computer vision, which plays an important role in many
high-level vision tasks like activity understanding [10] and human
re-identification [32].

With the development of Convolutional Neural Network [26, 27,
28, 25, 17], great progress has been achieved in human pose esti-
mation. For example, in [17], Newell first proposes the hourglass
network to predict the human keypoints. It shows that the repeated
bottom-up, top-down processing and the intermediate supervision are
critical to improving the estimation performance. Yang et al.[30] de-
sign a Pyramid Residual Module to explicitly learn convolutional fil-
ters for building feature pyramids and enhance the robustness of key-
point estimation against scale variations of visual patterns. Although
the stacked hourglass network [17] and its variants [14, 30, 9, 31]
have achieved significant performance, it is still an open problem
to achieve accurate localizing results due to the occluded keypoints,
overlapped limbs, and abnormal poses.

To locate keypoints accurately, a model has to take the high spatial
resolution information and multi-level information (e.g., multi-stage
information and multi-scale information) into account. For example,
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Figure 1. Complex scenarios predictions on MPII Human Pose test dataset
by our proposed network. (a) A person with invisible limbs followed by
predicted heatmap and skeleton. (b) A person with blurred and abnormal

pose followed by predicted heatmap and skeleton.

the right ankle and right knee of the woman in Figure 1(a) are in-
visible keypoints, high-level feature maps with large receptive field
are needed to infer such kind of keypoints. However, the high spatial
resolution information can provide detailed features, which is useful
for refining the positions of the other visible joints. Another exam-
ple, the human body in Figure 1(b) is blurred with abnormal pose,
multi-level features should be extracted and fused effectively and
sufficiently for the blurred and abnormal pose estimation. Accord-
ing to the above analysis, a Dilated Hourglass Module is proposed to
preserve high spatial resolution information along with large respec-
tive field. Moreover, a Selective Information Module is designed to
fuse the features of different levels under a sufficient consideration of
spatial content-aware mechanism. Based on the two prominent com-
ponents, we propose an efficient Spatial Preserve and Content-aware
Network (SPCNet) for human pose estimation, as shown in Figure 2.

For preserving high spatial resolution information along with large
respective field, we exploit the dilated convolution operation in the
hourglass network. Classic hourglass network adopts large down-
sampling factor to obtain large receptive field. It is good for esti-
mating the occluded and invisible keypoints, but compromises the
location ability. Different from the hourglass network, we substitute
the hourglass module with our proposed Dilated Hourglass Module
(DHM) to obtain large receptive field and avoid the reduction of spa-
tial dimension caused by the subsampling operation. As shown in
Figure 2(a), the spatial size is fixed after only two subsampling op-
erations. Then the dilated bottlenecks are applied to keep the spatial
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Figure 2. Overview of SPCNet. (a) The structure of Dilated Hourglass Module(DHM). (b) The diagram of Selective Information Module(SIM). We stack 8
DHMs to capture multi-level features, then the SIM adaptively fuses the multi-level features under a sufficient consideration of spatial content-aware

mechanism.

resolution, which can also efficiently capture semantic information
and maintain detailed features.

Nowadays, there is an increasing interest in designing networks
with attention mechanism. Recent works focus on the spatial atten-
tion, channel attention, and non-local attention in the single-level in-
formation, and prove the effectiveness of the attention module. How-
ever, little attention has been paid to adaptively fuse multi-level in-
formation under visual attention mechanism. In our paper, a Selective
Information Module (SIM) is proposed to effectively fuse the differ-
ent levels of features under the attention mechanism. As described
in Figure 2(b), we adaptively assemble the multi-level features via
a pixel-wise weighted summation in spatial dimension, where the
pixel-wise weights are produced by attention-based method under a
sufficient consideration of spatial content-aware mechanism. At dif-
ferent spatial position, multi-level features are fused in different pro-
portions according to the diversity of local region content.

In this paper, we first gather up the multi-stage information and
multi-scale information from the decoder layers of each Dilated
Hourglass Module to compose four high-dimensional feature maps
of different levels. Second, we use the proposed Selective Informa-
tion Module to effectively fuse the four different levels information
for predicting the human body keypoints. Then, we evaluate our pro-
posed method on MPII Human Pose dataset [1] , LSP dataset [13]
and FLIC dataset[20], ablation studies demonstrate the effectiveness
of the Dilated Hourglass Module and Selective Information Module.
In particular, our method exceeds prior methods and achieves the
state-of-the-art performance.

In summary, there are three contributions in our paper:

• We explore a novel Dilated Hourglass Module which employs the
dilated bottlenecks to preserve high spatial resolution and obtain
large receptive field.

• We propose an effective feature fusion method called Selective In-
formation Module, which is able to adaptively assemble the multi-
level spatial information.

• Our proposed network outperforms the state-of-the-art methods
on MPII Human Pose dataset, LSP dataset and FLIC dataset.

The rest of this paper is organized as follows. In Section 2, we re-
view some articles related to our work. In Section 3, we present the
main idea of our SPCNet work. Then ablation studies are performed
to measure the effects of different parts of our system, and the exper-
imental results are reported in Section 4, followed by a conclusion in
Section 5.

2 Related Work
In this section, we review three parts related to our method: human
pose estimation, dilated convolution and attention mechanism.
Human pose estimation. There are many application scenarios for
human pose estimation, such as activity understanding [10], human
re-identification [32]. Pictorial structures [2] or graphical models [7]
as representative of the traditional methods are used to deal with
pose estimation problems. However, these methods predict positions
of keypoints rely on hand-generated features, which are suscepti-
ble to difficult issues such as occlusion. Recently, deep convolu-
tional networks surpass traditional methods and achieve the state-of-
the-art results in pose estimation. DeepPose [27] uses deep learning
method for pose estimation which directly regresses the keypoints’
coordinates by multi-stage refinement for the first time. Methods of
[17, 28, 8, 5, 22] use fully convolutional neural network to regress
the Gaussian heatmap and infer the human keypoint coordinates by
using the Gaussian peaks. These methods can produce high quality
representation. In [17], Newell first proposes the hourglass network
to predict the human keypoints. It shows that the repeated bottom-up,
top-down processing and the intermediate supervision are critical to
improving the estimation performance. Pyranet [30] is a variant of
stacked hourglass network that designs the pyramid residual mod-
ule to enhance the invariance in scales of deep convolutional neural
network.
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Dilated convolution. Recently, lots of approaches with dilated con-
volution have achieved high performance on different benchmarks
of semantic segmentation [6] and object detection [15]. DeepLab [6]
designs atrous spatial pyramid pooling (ASPP) that applies dilated
convolution with various dilation rates on multiple parallel branches
to capture detailed information and context information(multi-level
informations). One key advantage is that it can effectively enlarge
receptive field size to incorporate context without introducing extra
parameters or computation cost. In parallel, large receptive field is
also needed for the hard keypoints’ prediction. Motivated by this,
we propose a novel bottom-up and top-down hourglass module dec-
orated with the dilated convolution. In this way, we can obtain large
receptive field and maintain high spatial resolution simultaneously,
both of which are critical to the human pose estimation task.
Attention mechanism. Visual attention has achieved great success
in various tasks, such as image classification, human pose estima-
tion and image segmentation. SENet[11] proposes a ”Squeeze-and-
Excitation” block to recalibrate channel-wise feature by using chan-
nel attention operation. In [21], Su et al. design a Spatial Channel-
wise Attention Residual Bottleneck to enhance the feature responses
both in the spatial and channel-wise context. The above methods only
study the spatial attention and channel attention concentrating on the
single-level information. However, little attention has been paid to
adaptively fuse multi-level information under visual attention mech-
anism. Our work is inspired by the spatial-attention approaches and
we adaptively assemble the multi-level spatial features by fusing the
information of different levels via a pixel-wise weighted summation,
where the weighted parameters are learned through the spatial atten-
tion mechanism.

3 Method
In this section, we propose a novel Spatial Preserve and Content-
aware Network (SPCNet) to preserve spatial resolution information
and select relatively important features from different levels accord-
ing to the local part content under the spatial attention mechanism.
An overview of the proposed SPCNet is illustrated in Figure 2. First,
we briefly review the stacked hourglass network [17]. Then, we intro-
duce the structure of Dilated Hourglass Module (DHM) and Selec-
tive Information Module (SIM) in detail. Finally, the complete net-
work architecture of SPCNet is presented as well as the training and
inference processing details.

3.1 Revisiting Stacked Hourglass Network
Stacked hourglass network [17] is a classic approach for locating
body keypoints from RGB images. The hourglass unit performs
bottom-up process by subsampling the feature maps, and then con-
ducts symmetric top-down process by upsampling the feature maps
with the combination of higher resolution features from bottom lay-
ers to generate the high resolution heatmaps. Then, the hourglass
units are stacked to build the stacked hourglass network. Each hour-
glass unit is supervised with the ground-truth heatmap.

3.2 Dilated Hourglass Module
Motivation In the task of single-person pose estimation, most of the
modern methods tackle it as a dense regression issue. Large down-
sampling factor in encoding process brings large effective recep-
tive field, which is beneficial to the inference of occluded, twisted
and overlapped limbs. However, it will reduce the spatial resolution
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Figure 3. (a)(b) Detailed structure of two different dilated bottlenecks used
in Dilated Hourglass Module. (c) Conventional bottleneck.

which is critically important for refining the location of human body
keypoints. Therefore, the trade-off between the global feature and
the detail feature should be taken into account. Motivated by this, we
propose a novel Dilated Hourglass Module not only to maintain the
high resolution spatial structure on human body but also obtain large
receptive field, which is shown in Figure 2(a).

In the bottom-up way of the original hourglass unit, it conducts
4 downsampling operations to reduce the spatial dimension from
64× 64 to 4× 4 pixels for obtaining large receptive field. The low-
est resolution feature map contains high-level semantic information
which is critical to the hard keypoints’ location, while it compro-
mises the spatial resolution information which can provide detailed
information for refining the positions of keypoints. Aiming at lever-
aging both the abundant context information and high spatial resolu-
tion information, we proposed a Dilated Hourglass Module (DHM)
in our paper.

On one hand, the DHM uses only two downsampling operations
to maintain the high spatial dimension which is 1/4 of the input res-
olution and fix the spatial resolution as 4x downsampling after two
downsampling operations to mitigate the aforementioned issue. On
the other hand, in order to get large receptive field, we introduce
3× 3 convolutional layer with dilation rate R to replace the conven-
tional 3×3 convolutional layer of original residual block. The dilated
convolution process is formulated as follows:

out[i, j] =

K−1∑
m=0

K−1∑
n=0

(inp[i+R ∗m, j +R ∗ n] ∗W [m,n]), (1)

where out[i, j] is the value of output feature map at spatial
position[i, j], inp is the input feature map, [m,n] represents the
position index of the dilated convolutional kernel W , K refers to
the kernel size and R corresponds to the dilation rate. For instance,
the kernel size of 3 × 3 convolution filter with dilation rate R could
be considered as 3 + 2 × (R − 1). In our paper, there are three
kinds of residual bottlenecks in our proposed DHM: dilated residual
blocks (Bottleneck a and Bottleneck b), conventional residual block
(Bottleneck) as shown in Figure 3. R is experimentally set to 2 for
Bottleneck a and Bottleneck b.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



softmax

mul

Conv1*1

Conv1*1

Conv1*1

Conv1*1

Conv1*1 𝑨𝑨𝟏𝟏
𝑨𝑨𝟐𝟐

𝑨𝑨𝟑𝟑
𝑨𝑨𝟒𝟒

𝑨𝑨𝟏𝟏

𝑨𝑨𝟐𝟐

𝑨𝑨𝟑𝟑

𝑨𝑨𝟒𝟒

+ +

𝑿𝑿𝟏𝟏

𝑿𝑿𝟐𝟐

𝑿𝑿𝟑𝟑

𝑿𝑿𝟒𝟒
mul

mul

Upsample + Element-wise sum

mul

mul Element-wise multiply

Channel=4Channel=256

{𝑴𝑴𝒏𝒏}

(a) Information collection (b) Information Distribution 

F

Figure 4. The overall structure of Selective Information Module(SIM), the SIM consists of two steps: (a) Information Collection: X1 ∼ X4 are multiple
receptive field features with equal dimension extracted by Information Collection process. (b) Information Distribution: {Mn} is the squeezed feature with

4 channels before softmax operation. A1 ∼ A4 are pixel-wise weights normalized along the channel via a softmax layer.

3.3 Selective Information Module

Motivation High resolution feature maps consist of more details
which can precisely localize the keypoints, but may fail to recog-
nize the twisted or overlapped keypoints due to small receptive field.
Low resolution representations contain more semantic context which
can handle the difficult scenarios (e.g., invisible keypoints, twisted
pose). How to efficiently aggregate the multi-level features is still
a challenging issue for the pose estimation. In general, element-
wise summation and channel-wise concatenation are most commonly
used methods to fuse multi-level features. Element-wise summation
equally aggregate the features from multiple levels, which is not a
learnable process. Despite the channel-wise concatenation followed
by 1× 1 convolution can be considered as a learnable process, while
it applies the same convolutional kernel across the whole feature map
regardless of the content of local region. However, the importance of
each level should be treated different in intuition. We consider that
different local regions require multi-level features in different propor-
tions according to the diversity of local region content information.

Against the aforementioned problem, we design Selective Infor-
mation Module (SIM) to adaptively assemble the spatial features
from multiple levels, as illustrated in Figure 4 . There are two
main steps in our proposed SIM: Information Collection and Infor-
mation Distribution. With the Information Collection, we can get
multi-level feature information from the stacked DHMs. Through the
Information Distribution, the multi-level feature information can be
adaptively fused. In detail, our proposed module fuses the multi-level
features via a weighted summation at each pixel position, where the
weights are generated by trainable process. We experimentally veri-
fied our proposed module effectively fuse the spatial detail informa-
tion and context information.

Information Collection: We first extract the multi-level fea-

tures(i.e., 16, 16, 32, 64 pixels) from each deconv layer of the Di-
lated Hourglass Module (DHM). Second, features with equivalent
scales in eight stacked DHMs are concatenated to obtain four high-
dimensional feature maps. Then, we reduce the channels of the four
high-dimensional feature maps by 1 × 1 convolutional layers which
reduces the number of channels from 2048 to 256 followed by the
batch normalization and ReLU in sequence. Next, we upsample
multi-level features(i.e., 16, 16, 32, 64 pixels) to 64×64 respectively
and denote the features with multiple receptive field as X1 ∼ X4

(with the same resolution of 64× 64 and the same channel of 256 ).
Information Distribution: We first simply fuse X1 ∼ X4 via

element-wise combination which is considered as information ag-
gregation from features of multiple levels. Then we employ 1 × 1
convolutional filters to conduct the channel squeeze and compress
the channels to 4. Here we consider the squeezed feature M =
{Mn}4n=1, where Mn = {M1,1

n ,M1,2
n , ...,M i,j

n , ...,MH,W
n } cor-

responding to the feature map of single channel. Index (i, j) repre-
sents the pixel position. After that, a softmax operation is conducted
across channels to rescale activations and then rescaled activations
are sliced along the channel dimension to generate pixel-wise adap-
tive weights A = {An}4n=1 corresponding to the multi-level fea-
tures(i.e., X1 ∼ X4). The process above are formulated as follows:

Ai,j
n =

exp(M i,j
n )∑4

k=1 exp(M
i,j
k )

, (2)

4∑
n=1

(Ai,j
n ) = 1, (3)

in which, Ai,j
n represents relative importance of multi-level features

Xn at pixel position (i, j). Ai,j
1 ∼ Ai,j

4 are the learned weights for
Xi,j

1 ∼ Xi,j
4 respectively. The addition of A along the channel di-

mension is normalized to 1 via softmax operation for each spatial
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position (i, j). Finally the assemble for features with multiple recep-
tive field is defined as:

F =

4∑
n=1

(An ∗Xn), (4)

where F is the final fused feature for predicting the human keypoints,
∗ means the pixel-wise multiplication.

3.4 Network Architecture, Training and Inference

Network Architecture. With the Dilated Hourglass Mod-
ule and Selective Information Module, we propose a novel
Spatial Preserve and Content-aware Network (SPCNet) for human
pose estimation as illustrated in Figure 2. First, we propose a Dilated
Hourglass Module to preserve the spatial resolution along with large
receptive field. Similar to Hourglass Network, we stack the DHMs
to get the multi-stage and multi-scale information. Then, a Selective
Information Module is designed to select relatively important fea-
tures from different levels under a sufficient consideration of spatial
content-aware mechanism. Finally, we use the selected information
by the SIM to predict the human body keypoints. In our paper, we
find that the two proposed modules are complementary to each other
for higher performance on keypoint localization.
Network Training. We use score maps to represent the ground-truth
heatmaps of human body keypoints. Denote the ground-truth posi-
tions by C = {Cn}Nn=1, N is the number of human body keypoints.
Cn is the coordinates of the nth keypoint. In this paper, we use a
Gaussian distribution with mean Cn and variance δ to represent the
ground-truth heatmap Yn as follows:

Yn ∼ N(Cn, δ). (5)

A squared error loss function is applied to minimize the loss be-
tween the predicted score maps Ŷn (each Dilated Hourglass Mod-
ule and the Selective Information Module) and the ground-truth
heatmaps:

J =
1

2

9∑
i=1

K∑
k=1

N∑
n=1

(Yn − Ŷn)
2, (6)

K is the number of samples. In our paper, there are 8 auxiliary losses
from the stacked Dilated Hourglass Module and 1 supervision loss
for the Selective Information Module.
Network Inference. During inference, we obtain the predicted body
joint locations from the predicted score maps generated from the Se-
lective Information Module by taking the locations with the maxi-
mum score as follows:

Ĉn = argmax Ŷn, n = 1, 2, 3, ..., N. (7)

4 Experiments and Analysis

In this section, we first briefly introduce the datasets, evaluation met-
rics and implementation details in 4.1. Next, we conduct compre-
hensive ablation study to reveal the effectiveness of our proposed
modules in 4.2. Finally, we compare our results with the prior state-
of-the-art results on MPII Human Pose dataset [1], LSP dataset [13]
and FLIC dataset[20].

4.1 Experimental Setup

Datasets and Evaluation Metrics. We evaluate the performance
of our network on three benchmark datasets mentioned above. The
MPII Human Pose dataset is composed of around 25K images con-
taining over 40K samples with annotated body joints. 28K sam-
ples are used for training, and the remaining 12K are used for test-
ing. The LSP dataset and its extended training dataset includes 12K
sports images with annotations (11K images are used for training
and 1K images are used for testing). The FLIC dataset consists of
5003 samples(3987 for training, 1016 for testing). The evaluation is
conducted using Percentage of Correct Keypoints (PCK) [1] metric
which shows the percentage of detections that fall within a normal-
ized distance of the ground truth. For the MPII Human Pose evalua-
tion, we use the modified PCK measure that uses a fraction of head
size as the normalized factor(denoted as PCKh[1]). For the LSP and
FLIC evaluation, we use PCK as previous researches [30, 23].
Data Augmentation. During training, we use random rotation, ran-
dom flip, and random scaling. The rotation range is (-60, 60), the flip
probability is 0.5 and the scale range is (0.75, 1.25). Each input im-
age is cropped around the target person according to the annotated
body center and scale, and then resized to 256× 256 pixels.
Implementation Details. We train our proposed network using RM-
SProp [24] optimizer with a mini-batch size of 48 (12 per GPU) for
170 epochs on a workstation with four 12GB NVIDIA TITAN XP
GPUs. The initial learning rate of 1e-3 and is dropped by the factor
of 10 at the 120th and the 150th epoch. All codes are implemented
with Pytorch. A Mean Squared Error (MSE) loss is applied to com-
pute the loss between the predicted heatmap and the ground-truth
heatmap. Testing results are produced from six-scale image pyramids
with flipping.

4.2 Ablative Analysis

In this subsection, we conduct ablation experiments on the valida-
tion set of the MPII Human Pose to explore the effectiveness of the
proposed Dilated Hourglass Module (DHM) and Selective Informa-
tion Module (SIM). We define the 8-stack hourglass network as our
baseline network. Based on the hourglass network, we first explore
each proposed component and then conduct comprehensive analysis
for the impact of each module (i.e. DHM and SIM) for the whole
network by comparing the PCKh score.
Effect of Dilated Hourglass Module. In this experiment, we investi-
gate the effect of our proposed Dilated Hourglass Module and the in-
fluence of dilation rate R. The original hourglass module is replaced
by the DHM with various dilation rate to conduct a series of experi-
ments. As shown in Table 1, we achieve the best performance when
R is set to 2. Compared with the baseline network, The PCKh score
is improved from 88.9% to 89.7% by using Dilated Hourglass Mod-
ule with dilation rate 2, which is an obvious improvement. It exper-
imentally confirmed that using the dilated convolution can preserve
more spatial information, which is benefit for refining the positions
of joints.

Table 1. Ablation experiments about Dilated Hourglass Module on MPII
validation dataset (PCKh@0.5).

Methods Head Sho. Elb. Wri. Hip Knee Ank. Total
Baseline 96.7 95.8 89.9 84.9 88.8 85.0 80.6 88.9
DHM,R=1 96.9 95.6 90.0 85.3 89.3 84.8 81.0 89.0
DHM,R=2 96.6 96.1 90.5 85.4 89.7 86.4 82.3 89.7
DHM,R=3 96.9 95.7 90.1 85.6 89.4 85.8 81.9 89.4
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Table 2. Ablation experiments about Selective Information Module on
MPII validation dataset (PCKh@0.5).

Methods Head Sho. Elb. Wri. Hip Knee Ank. Total
Baseline 96.7 95.8 89.9 84.9 88.8 85.0 80.6 88.9
Baseline+IC+Sum 96.8 95.6 90.1 84.8 89.1 85.0 81.6 89.1
Baseline+IC+Concat 96.5 95.9 90.2 85.3 89.1 85.3 82.1 89.3
Baseline+SIM(IC+ID) 96.8 96.0 90.5 85.6 89.5 86.1 82.5 89.6

Effect of Selective Information Module. There are two main
steps in Selective Information Module(SIM): Information Collec-
tion(IC) and Information Distribution(ID). To explore the effec-
tiveness of Selective Information Module, we first get multi-level
features(i.e.,X1 ∼ X4) from the stacked DHMs through the Infor-
mation Collection process, as described in Section 3.3, and then con-
duct a series of experiments among three feature fusion methods:
element-wise summation, channel-wise concatenation and Informa-
tion Distribution process in our proposed SIM. In detail, for element-
wise summation, we sum the multi-level features X1 ∼ X4 directly;
for channel-wise concatenation, we first concatenate the X1 ∼ X4

along the channel dimension and then add an extra 1 × 1 convolu-
tional layer after concatenate operation to generate fusion feature by
compressing the channel to 256. As shown in Table 2, we observe
that Information Collection process combined with any of the three
feature fusion methods can improve the performance of baseline net-
work. Furthermore, the Information Distribution process achieves the
best PCKh score among these three feature fusion methods on MPII
validation set. We obtain 0.5% and 0.3% improvement by replacing
the element-wise summation and channel-wise concatenation with
the Information Distribution process respectively and achieve 0.7%
improvement by adding the SIM to the original hourglass network,
which demonstrate the superior performance of our Selective Infor-
mation Module over the other feature fusion methods.

Table 3. Ablation experiments about each proposed Module on MPII
validation dataset (PCKh@0.5).

DHM SIM Head Sho. Elb. Wri. Hip Knee Ank. Total
× × 96.7 95.8 89.9 84.9 88.8 85.0 80.6 88.9√

× 96.6 96.1 90.5 85.4 89.7 86.4 82.3 89.7
×

√
96.8 96.0 90.5 85.6 89.5 86.1 82.5 89.6√ √
96.9 96.4 90.9 86.3 89.8 86.4 82.5 90.0

Table 4. Performance comparisons on the MPII validation
dataset(PCKh@0.5).

Methods Head Sho. Elb. Wri. Hip Knee Ank. Total
single-scale

Newell et al. [17] 96.7 95.8 89.9 84.9 88.8 85.0 80.6 88.9
Ours(SPCNet) 96.9 96.4 90.9 86.3 89.8 86.4 82.5 90.0

single-scale with horizon flip
Newell et al. [17] 96.8 96.0 90.6 85.9 89.8 86.1 81.1 89.5
Yang et al. [30] 96.8 96.0 90.4 86.0 89.5 85.2 82.3 89.6
Tang et al. [23] 95.6 95.9 90.7 86.5 89.9 86.6 82.5 89.8
SimpleBaseline [29] 97.0 95.9 90.3 85.0 89.2 85.3 81.3 89.6
HRNet [22] 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3
Ours(SPCNet) 97.1 96.4 91.3 87.0 90.0 87.1 83.8 90.5

multi-scale with horizon flip
Newell et al. [17] 97.1 96.1 90.8 86.2 89.9 85.9 83.5 90.0
Yang et al. [30] 97.4 96.2 91.1 86.9 90.1 86.0 83.9 90.3
Tang et al. [23] 97.4 96.2 91.0 86.9 90.6 86.8 84.5 90.5
SimpleBaseline [29] 97.5 96.1 90.5 85.4 90.1 85.7 82.3 90.1
HRNet [22] 97.7 96.3 90.9 86.7 89.7 87.4 84.1 90.8
Ours(SPCNet) 97.8 96.6 91.9 87.5 90.7 87.5 84.5 91.1

Comprehensive Analysis. In this experiment, we explore the con-
tribution of each module to the whole network. Besides separately
adding each proposed module to the baseline, we further employ

(d)(c)(b)(a) (e)

Figure 5. Qualitative evaluation on MPII Human pose test dataset. (a) The
input images. (b) Heatmaps predicted by the original hourglass network.

(c)Skeletons predicted by the original hourglass network. (d) Further refined
heatmaps predicted by our proposed network. (e) Further refined skeletons

produced by our proposed network.

the two proposed modules to the baseline simultaneously. The re-
sults are reported in Table3. Compared with the 88.9% PCKh score
of the baseline hourglass network, we achieve 0.8% improvement
with only the Dilated Hourglass Module used and 0.7% improve-
ment with only the Selective Information Module used. Finally our
method achieves 90.0% PCKh score with the two proposed modules
applied simultaneously, which is 1.1% improvement compared to the
baseline hourglass. Validation PCKh curves across different architec-
tures above and the validation PCKh curves of different keypoints at
different threshold for SPCNet are plotted in Figure 7(a) and (b) re-
spectively.

Table 5. Comparisons of score on the MPII Human Pose test dataset
(PCKh@0.5).

Methods Head Sho. Elb. Wri. Hip Knee Ank. Total
Lifshitz et al.[16] 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0
Rafi et al. [19] 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3
Insafutdinov et. al.[12] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5
Wei et al.[28] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
Bulat&Tzimiropoulos [4] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7
Newell et al.[17] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Chu et al.[9] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5
Chen et al.[6] 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9
Yang et al.[30] 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0
Ke et al.[14] 98.5 96.8 92.7 88.4 90.6 89.3 86.3 92.1
Tang et al.[23] 98.4 96.9 92.6 88.7 91.8 89.4 86.2 92.3
HRnet [22] 98.6 96.9 92.8 89.0 91.5 89.0 85.7 92.3
Zhang et al.[31] 98.6 97.0 92.8 88.8 91.7 89.8 86.6 92.5
Ours(SPCNet) 98.8 97.1 93.2 88.9 92.0 89.6 86.3 92.6

Following prior methods[9, 30], we further conduct the horizon
flip and six-scale image pyramids on the validation set of the MPII
Human Pose. The results are reported in Table 4. With the multi-scale
image pyramids with horizon flipping applied to the prediction, we
achieve 91.1% PCkh score, which is 0.3% improvement compared to
the HRNet [22].
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(a) (b) 

Figure 6. (a) Examples of estimated poses on the MPII Human Pose test dataset. (b) Examples of estimated poses on the LSP test dataset. Our model deals
well with occlusions, blurred and twisted limbs, abnormal poses, and changes of view position.
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Figure 7. (a) PCKh curves of the training process across different
networks on MPII validation set. (b) PCKh curves of different keypoints
predicted by SPCNet at threshold of 0.05 to 0.5 on MPII validation set.

4.3 Comparison with the state-of-the-art Methods

To evaluate the performance of our method, we compare our network
with the prior state-of-the-art methods on three datasets: MPII Hu-
man Pose test dataset, LSP test dataset and FLIC test dataset. More-
over, we give some qualitative results generated by baseline network
and our proposed network.
MPII Human Pose dataset. We report the PCKh scores of our ap-
proach and the previous state-of-the-art methods at the threshold
of 0.5 in Table 5. Compared with the hourglass network, our ap-
proach improves the performance of total PCKh score from 90.9%
to 92.6%. Specifically, as shown in Table 5, our method surpasses
the HRNet[22] across all keypoints except for the wrist. The final
results demonstrate the superior performance of our proposed model
over the prior state-of-the-art methods in terms of PCKh score.
LSP dataset. Table 6 summarizes the PCK scores at the threshold
of 0.2 on LSP dataset. We follow the previous methods[30, 9] to
train our network by adding training set of MPII Human Pose to
the LSP and its extend training set. Our method achieves the highest
total score 96.4% and exceeds the previous state-of-the-art results
across all keypoints on the LSP test set. We observe that the proposed
network improves the PCK scores with a large margin by 4.4% and
2.7% on the wrist and elbow compared with the closest competitor,
and obtains 1.3% improvement in average.
FLIC dataset. Table 7 shows the PCK@0.2 scores on FLIC dataset.
Our proposed method achieves the 99.3% and 98.2% PCK@0.2

Table 6. Comparisons of score on the LSP test dataset (PCK@0.2).

Methods Head Sho. Elb. Wri. Hip Knee Ank. Total
Belagiannis&Zisserman [3] 95.2 89.0 81.5 77.0 83.7 87.0 82.8 85.2
Lifshitz et al.[16] 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7
Pishchulin et al.[18] 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1
Insafutdinov et al.[12] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5
Wei et al.[28] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5
Bulat &Tzimiropoulos[4] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7
Chu et al.[9] 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6
Yang et al.[30] 98.3 94.5 92.2 88.9 94.4 95.0 93.7 93.9
Zhang et al.[31] 98.4 94.8 92.0 89.4 94.4 94.8 93.8 94.0
Tang et al.[23] 98.3 95.9 93.5 90.7 95.0 96.6 95.7 95.1
Ours(SPCNet) 98.3 96.3 96.2 95.1 96.0 96.7 95.9 96.4

scores for the elbow and wrist, which are 0.3% and 1.2% improve-
ment compared with the hourglass network respectively.

Table 7. Comparisons of score on the FLIC test dataset (PCK@0.2).

Methods Elbow Wrist Total
Wei et al.[28] 97.8 95.0 96.4
Newell et al.[17] 99.0 97.0 98.0
Ke et al.[14] 99.2 97.3 98.3
Ours(SPCNet) 99.3 98.3 98.8

Qualitative results. We compare the baseline model (8-stack hour-
glass network) with our proposed model by visualizing the estimated
heatmaps and skeletons on the test set of MPII Human Pose, as
demonstrated in Figure 5. We observe that our method outperforms
the baseline model in the challenging cases, such as occluded key-
points, invisible keypoints, crowded background and abnormal body
posture. The 1st row shows a women with a twisted pose. The 2nd
row presents person with overlapped limbs. Then the 3rd row ex-
hibits a person whose limbs are indistinct with surroundings, and the
4th row shows a person with abnormal pose. The baseline model
produces the failure predictions as shown in Figure 5(c) while our
proposed model makes the refined predictions as shown in Figure
5(e) when facing these kinds of complex scenarios. It is noteworthy
that our proposed model generated higher response in the prediction
heatmaps with the blurred regions, as illustrated in Figure 5(d) com-
pared to the Figure 5(b). In addition, examples of estimated pose on
MPII test dataset and LSP test dataset are illustrated in Figure 6.

Compared with the baseline hourglass, our method can effectively
improve the pose estimation performance of difficult scenarios (e.g.,
occlusion, twisted and overlapped human body, abnormal pose, and
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so on). By using the Dilated Hourglass Module, we can preserve the
spatial resolution information along with large receptive field. With
the Selection Information Module, the multi-stage and multi-scale
information can be adaptively selected and enhanced for the final hu-
man keypoints localization. Leveraging the two proposed modules,
we can get high spatial resolution and different receptive field infor-
mation, which are critical to the human pose estimation task.

5 Conclusion
In this paper, we propose to incorporate a Dilated Hourglass Mod-
ule and a Selective Information Module into an end-to-end architec-
ture for human pose estimation. By stacking the Dilated Hourglass
Module, we can preserve spatial resolution information along with
large receptive field. Meanwhile, a Selective Information Module is
designed to select relatively important features from different levels
under a sufficient consideration of spatial content-aware mechanism.
The effectiveness of the Dilated Hourglass Module and the Selective
Information Module are evaluated on validation set of MPII Human
Pose. We experimentally observe that the proposed network can al-
leviate the difficulties brought by occlusions, overlapped bodies and
abnormal poses. Overall, our approach achieves state-of-the-art re-
sults on MPII Human Pose dataset, LSP dataset and FLIC dataset.
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