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Abstract. Neural network pruning is widely applied to various mo-
bile applications. Previous pruning methods mainly leverage ad-hoc
criteria to evaluate channel importance. In this paper, we propose
an effective metaheuristic sub-structure selection (MetaSelection)
method for neural network pruning. MetaSelection exploits evolu-
tionary algorithm (EA) to search the proper sub-structure satisfying
the resource constraints. In comparison with previous AutoML based
methods, MetaSelection can automatically achieve the pruning rate
and channel selection at the same time instead of hand-crafted cri-
teria in a cascaded way. Regarding the tremendous search space of
channel selection as a combinatorial optimization problem, we fur-
ther utilize a coarse-to-fine strategy and the novel probability distri-
bution crossover (PDC) to speed up the search procedure. Besides,
MetaSelection prunes the network globally rather than in a layer-
by-layer way. We evaluate MetaSelection on several appealing deep
neural networks, achieving superior results with adaptive depth and
width. Concretely, on ImageNet, MetaSelection achieves a top-1 ac-
curacy of 71.5% on MobileNetV2 under 70% FLOPs constraint and
a FLOPs reduction of 30% with 76.4% top-1 accuracy for ResNet-
50.

1 Introduction
Deep neural networks have achieved remarkable performance in a
variety of computer vision tasks, e.g., image classification [9], object
detection [7] and so on. However, these networks with extraordinary
capacity are more resource-hungry, which significantly restricts the
deploy for mobile applications, e.g., embedded sensors or portable
devices with limited computational and power resources. Recently,
neural network pruning [19, 21, 12, 24] has been widely studied as
an efficient way to compress or accelerate deep neural networks.

Network pruning methods mainly belong to two branches. The
first branch is based on handcrafted metrics, e.g., L2-norm [19], spar-
sity regularization [21, 16], and percentage of zero activations [14].
However, these methods require large amount of human heuristics
and expertise for proper ad-hoc criteria. Another stream uses Au-
toML based methods to automatically prune channels, e.g., exploit-
ing reinforcement learning [12] or progressive barrier method [30]
for networks pruning. However, these AutoML methods only deter-
mine the pruning rate of each layer voluntarily while the channel se-
lection is still achieved by aforementioned handcrafted matrices. Be-
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Figure 1. Overview of our proposed MetaSelection model for network
pruning on ResNet-50. MetaSelection represents the network by a set of

operations and firstly selects the proper subset of blocks from the original
residual block set, then searches for the detailed width of each block
iteratively. The entire search process is completed using evolutionary
algorithm (EA) without any manual metrics. Finally, we get a pruned

ResNet-50 both shallower and thinner.

sides, such methods usually prune the channels layer-by-layer with a
greedy strategy without globally considering all channels, thus lead-
ing to the sub-optimal performance [31]. Moreover, Neural Archi-
tecture Search (NAS) [27] is also leveraged to search for compact
networks, but it requires a well-designed search space and only ob-
tains a discrete space for channels quantity (e.g. {16, 24, 32, 64} for
channels nums). [20] directly find the good pruning structure with
weights generation using a meta-learning based PruningNet, under
the assumption of optimal pruning structure is most essential [22].
On the contrary, [6] states the subnetworks (lottery ticket) with in-
herited weights makes pruning effectively. We also conduct neural
network pruning as a subnetworks selection problem for appealing
models with weights under the hypothesis similar to [6].

In this paper, we reformulate the neural network pruning as a sub-
structure selection problem. Representing the network as a set of
operations, we can determine the pruning rates of all layers and s-
elect the proper operations simultaneously in a global fashion. Due
to the high computational complexity of combinatorial optimization
problem, we introduce an evolutionary algorithm (EA) to solve this
NP-hard problem. Nevertheless, the search space is still enormous
for EA, e.g., in Fig. 1, there are 27552 possible combinations for
ResNet-50, which motivates us to propose another two modifications
for further search acceleration. With the introduction of skip connec-
tions, the layer-wise redundancy in multi-branch networks has been
pointed out in various works [28, 15]. Thus a coarse-to-fine pruning
strategy is leveraged to significantly reduce the search space. Specif-
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ically, in Fig. 1, after removing 3 blocks from original ResNet-50
using coarse pruning, the search space reduces from 27552 to 25792

(5792 = 64× 2× 3 + 128× 2× 3 + 256× 2× 4 + 512× 2× 3).
Besides, we exploit a recombination strategy called probability dis-
tribution crossover (PDC) to replace the standard crossover in EA.
Experiments results and ablation study show that the PDC strategy
significantly accelerate the evolutionary process. Fig. 1 illustrates the
teaser of our proposed MetaSelection model. Moreover, MetaSelec-
tion automatically searches for the proper pruned structure globally
rather than pruning layer-by-layer greedily through manual criteria.
We evaluate our approach on CIFAR-10 [17] and ImageNet [5] us-
ing several appealing deep neural networks. Under the same FLOPs
constrains, our algorithm achieves higher accuracy than the uniform
baselines on ResNet [10], MobileNetV1 [13] and MobileNetV2 [26].
Compared with state-of-the-art AutoML channel pruning methods,
our algorithm produces superior or comparable results and leads to
more flexible pruning strategy. Compared with regularization based
pruning method, our algorithm also achieves superior performance.
In some instances, MetaSelection achieves a FLOPs reduction of
30% on ResNet-50 with 76.4% top-1 accuracy on ImageNet, and
70.6% and 71.5% top-1 accuracy under 0.75x resource constraint on
MobileNetV1 and MobileNetV2 correspondingly.

The main contributions of this paper are in three folds:

1. We propose an efficient AutoML method for network pruning,
called MetaSelection. Particularly, we reformulate network prun-
ing as a subset selection problem, and introduce an evolutionary
algorithm to address it. Specifically, we can determine the prun-
ing rate of each layer and select the proper sub-structure simulta-
neously rather than using handcrafted metrics or greedily pruning
layer-by-layer.

2. Considering high computational complexity of combinatorial op-
timization problem, we utilize a coarse-to-fine pruning strategy to
significantly reduce the search space. Besides, a more effective
recombination strategy called probability distribution crossover
(PDC) is used to further accelerate the evolutionary search.

3. Experiments of pruning various appealing deep neural networks
on both CIFAR and ImageNet dataset demonstrate the effective-
ness and superiority of our MetaSelection.

2 Related work
2.1 Criteria Based Network Pruning
Network pruning was first proposed by [18] and [8] to remove u-
nimportant connections and neurons. While weight pruning leads
to unstructural sparsity and needs extra hardware or library to ac-
celerate inference, recent works mainly focus on structural pruning
(e.g., channel pruning or block pruning). Traditional channel prun-
ing methods use handcrafted criteria to evaluate the importance of
channels, such as L2-norm [19], percentage of zero activations [14],
energy aware [24] and etc., and then prune channels according to the
importance. These methods require to design proper criteria and the
pruning rate which needs large amount of domain expertise and hu-
man heuristics. Other methods introduce L1 regularization on scal-
ing parameters of batch normalization [21] or extra scaling factors
[16] and training with different sparsity weight to achieve different
pruning rate. These handcrafted criteria based pruning methods are
time consuming and usually sub-optimal. Compared with this kind of
handcrafted pruning methods, our proposed MetaSelection can auto-
matically figure out the unimportant channels via EA with few man-
ual efforts.

2.2 AutoML Based Network Pruning
Recently, some AutoML based pruning methods were proposed to
tackle the drawbacks of handcrafted pruning methods. AMC [12]
leverages reinforcement learning to search for the pruning rate of
each layer. NetAdapt [30] uses a progressive barrier method to itera-
tively prune the network. However, these methods only automatical-
ly determine the pruning rate of each layer and still use handcrafted
criteria to select channels. What’s worse, they use a layer-by-layer
pruning strategy which has been proved to be problematic [31]. Most
recently, MetaPruning [20] was proposed using MetaLearning to pre-
dict the vicarious weight according to a given pruning rate, which by-
passes the channel selection problem. Our proposed MetaSelection
also aims to alleviate the manual efforts and attemps to solve the au-
tomatical channel selection problem. Compared with AMC [12] and
NetAdapt [30], our MetaSelection automatically figures out the prun-
ing rate meanwhile selects the proper channels. Moreover, MetaSe-
lection has a more flexible pruning strategy to adaptively adjust depth
and width.

2.3 Neural Architecture Search
Searching for optimal neural architecture has attracted increasing at-
tention recently. One stream is to explore the design space by rein-
forcement learning [1, 32] or evolutionary algorithm [25, 29]. An-
other stream is to build a supernet with multiple operation choices
in each layer then search for the path with the highest accuracy after
training, namely one-shot NAS [2, 3]. Different from NAS using dis-
crete channel numbers as search space, the width of each layer is usu-
ally consecutive in channel pruning, which leads to an explosion of
the search space. MetaSelection addresses the channel pruning prob-
lem from the view of sub-structure selection, inherently supporting
the continuous search space for channel selection.

3 Methodology
In this section, we propose a pruning method, MetaSelection, that
automatically prunes a network to meet resource constraints while
remaining high accuracy. Different from the prior AutoML pruning
methods, our algorithm determines the pruning rate5 for each layer
globally and selects channels automatically rather than leveraging
local information only or using handcraft metrics.

3.1 Problem Formulation
Similar to [30, 20], we first formulate the network pruning problem
as follow:

max
Net

Acc(Net)

s.t. Reso(Net) ≤ Budget
(1)

where Net is a compact network pruned from the original network,
Acc is the accuracy of validation dataset, Reso computes the com-
putational resources that the network requires while Budget refers
to the predefined resource constrain. Such resource budget can be
FLOPs, number of parameters, MACs, latency and etc.

In order to automatically determine the pruning rate and selec-
t channels at the same time, we rethink the pruning problem as a

5 Pruning rate of one layer is defined as the ratio of the number of discarded
channels against the number of original channels.
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Figure 2. The pipeline of our proposed MetaSelection. At each iteration, a sub-structure is searched via evolutionary algorithm for block/channel selection. If
the constraint is not satisfied, we only finetune the pruned network for several epochs to regain the accuracy and continue to prune it. Once the selected

sub-structure meets the constraint, it will be finetuned until convergence (i.e., long-term finetune) and returned as the final pruned network.

subset selection problem. Given a network, we can represent it by
a set of operations OP = {op1, ..., opn}. The operations can be
defined from different scale. At a fine scale, each operation is corre-
sponding to a channel (for CNNs) or a neuron (for MLPs); while at
a coarse scale, the operation can be a branch or transformation block
like residual block. Considering pruning a network is to reduce the
size of the network subject to resource constraints, it can be regard-
ed as selecting a proper subset of the original operations. Thus, this
problem can be reformulated as follows:

max
S⊆OP

Acc(Net(S))

s.t. Reso(Net(S)) ≤ Budget
(2)

where S is a subset selected from OP , and Net(S) is the corre-
sponding sub-network only retaining the selected operations accord-
ing to S. Then we can apply an evolutionary algorithm to search for
proper pruned network.

3.2 MetaSelection
The pipeline of our proposed MetaSelection is presented in Fig. 2.
Taking original networks as inputs, a sub-structure is achieved by an
evolutionary algorithm with a soft constraint. If the pruned network
does not meet the resource constraint, it will be fine-tuned for only a
few epochs to regain the accuracy (Short-term Finetune) and then
sent back to Sub-structure Selection for further compression.

Once the resource constraint is satisfied, the pruned network will
be fine-tuned until convergence (Long-term Finetune). Besides, for
multi-branch networks like ResNet and MobileNetV2, a coarse-to-
fine pruning strategy is leveraged to reduce the following channel

search space. That is to say, we first search the sub-structure at
block/branch level for one step, and then search for the proper width
of each layer.

3.2.1 Sub-structure Selection

This process is used for searching proper sub-structure via evolution-
ary algorithm. It takes a pre-trained network as input and evolves for
the proper sub-structure. In practice, we use the following schemes
in our evolutionary search process.

1. Representation: Each sub-structure is encoded into a vector−→op of
{0, 1}, where each bit represents the state of the operation. Here 1
denotes the operation is selected. This vector is the chromosome
or gene of the individual.

2. Fitness evaluation: To evaluate individuals, we define the fitness
as follow:

Fitness =
Acc(Netind)

Acc(Netori)
+ α

√
1− Reso(Netind)

Reso(Netori)
(3)

where Netind is an individual from the population, and Netori
is the original full network. Similar to training with sparsity reg-
ularization [21, 16], we add the resource constraint as a soft con-
straint penalty term to the fitness, and use a hyper-parameter α to
achieve the trade-off between the accuracy and resource constrain-
t. To make the training process more stable, we normalize these
two terms to [0, 1] with the corresponding values of the original
network. Note that we directly use the validation accuracy of the
pruned model without fine-tuning as final performance since it is
an efficient delegate of the fine-tuned accuracy [12].
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3. Selection and reproduction: In each generation, the Top K indi-
viduals with highest fitness in the parent population will be select-
ed to reproduce offspring. The reproduction is achieved through
mutation, m-Elitist and probability distribution crossover (PDC).
The mutation is to randomly reverse several bits of the chromo-
some. The m-Elitist stands for directly inheriting the elite indi-
vidual from parents. Instead of using standard crossover which
recombines the chromosomes of two parents to generate new off-
spring, we propose a novel recombination scheme called proba-
bility distribution crossover (PDC). PDC is carried out by cal-
culating the weighted mean of the Top K individuals for each bit,
then generating new individuals using this value as the probability
p. The probability p is calculated as follows:

pi =

∑
j∈TopK Fitnessj ×−→opi∑

j∈TopK Fitnessj
, i = 0, ..., |−→op| (4)

Standard crossover only leverages information of two parents and
has the tendency for more homogeneity with small populations
[4]. Our proposed PDC explores the information of elite individu-
als from the population, and generates new individuals according-
ly, which is much more efficient than standard crossover. Ablation
study further verifies the superiority of PDC.

After the evolution finished, the individual with the highest fitness
in the population is returned as the pruning solution of this step. The
evolutionary algorithm for sub-structure selection is presented in Al-
gorithm 1.

Algorithm 1 Sub-structure Selection Using EA
Require: Pretrained model PM ; Max generation N ; Population

size ps (ps = K + m + n); Elite size K; Mutation size m;
Probability distribution crossover size n;

Ensure: Pruning solution with best fitness best;
1: Initialize population S0;
2: Evaluate population(PM , S0);
3: for i = 0 : N do
4: elites = TopK(Si);
5: Smut =Mutation(elite,m);
6: Spdc = Probabilitydistributioncrossover(elite, n);
7: Si+1 = (elites, Smut, Spdc);
8: Evaluate population(PM , Si+1);
9: end for

10: best = Top1(SN );
11: return best;

3.2.2 Short/Long-term Finetune

Before the solution candidate meets the resource constraint, we fine-
tune the pruned network for few epochs to regain accuracy for further
search (short-term finetune correspondingly). Once the final pruned
network is obtained, we finetune the final pruned network until con-
vergence (long-term finetune corresondingly).

4 Experiments
In this section, we evaluate our MetaSelection on two standard
datasets: CIFAR [17] and ImageNet LSVRC-2012 [5]. We compare
MetaSelction with several state-of-the-art AutoML based pruning
methods [12, 30, 20] and handcraft policy based pruning methods
[21, 16]. Here we adopt FLOPs as the resource constraint, and it is
easy to expend to other constraint like latency.

Meta-parameter for EA There are several meta-parameter for
EA, as described in alg. 1. For the elite size K, we set it to 15, and
set both mutation size m and probability distribution crossover size
n to 25. For block selection, the search space is relatively small, on-
ly about O(220) - O(250), so we set the maximum generation to
20. While for channel selection, the search space is tremendous, e.g.
O(27552) on ResNet-50 without block pruning on ImageNet, so we
set the maximum generation to 30. We discuss more details about the
meta-parameter in the analysis section.

4.1 Results on CIFAR-10

Model Method Param ↓ FLOPs ↓ Acc
ResNet-56 AMC[12] - 50.0% 91.9%

Ours 70.1% 63.4% 92.4%
ResNet-164 NetSlim[21] 35.2% 44.9% 94.7%

SSS[16] 17.7% 48.0% 94.1%
Ours 41.6% 56.4% 94.7%

Table 1. Results on CIFAR-10. Param ↓ and FLOPs ↓ denote the reduction
of parameters and FLOPs, while Acc represents the accuracy. Our method

achieves higher accuracy with more reductions under the resource constraint.

Setting For CIFAR-10, we test our MetaSelection on ResNet-
56 and ResNet-164 [10]. ResNet-56 has 27 residual blocks each of
which consists of two convolutional layers, while ResNet-164 has 54
bottleneck residual blocks consisting three convolutional layers. We
first apply block pruning on both network to obtain a shallower net-
work, then apply channel pruning on the shallower network to get a
more compact one. For sub-structure selection, we split 5000 images
from training set as validation dataset. For short-term finetuning, we
train the pruned network for 10 epochs with a constant learning rate
of 0.001. While for long-term fintuning, we train the pruned network
on the whole training set for 50 epochs with a cosine learning rate
starting from 0.01.

Results Table 1 shows the results of our algorithm on CIFAR-10.
On ResNet-56, our algorithm achieves a FLOPs reduction of 63.4%
with the accuracy of 92.4%. On ResNet-164, our algorithm achieves
a parameter reduction of 41.6% and a FLOPs reduction of 56.4%
with the accuracy of 94.7%. For block selection, our MetaSelection
prunes 17 blocks on ResNet-164, and 9 blocks on ResNet-56 re-
spectively. During the block selection, we found that blocks in early
stages are pruned the most, which is similar to the observation made
by SSS [16]. Compared with NetSlim[21], SSS[16] and AMC[12],
our algorithm achieves both higher FLOPs reduction and accuracy
on both ResNet-56 and ResNet-164.

4.2 Results on ImageNet under FLOPs constraint
Setting For ImageNet ILSVRC-2012 dataset, we test our algorith-
m on two lightweight network, MobileNetV1 [13] and MobileNetv2
[26], and a heavyweight one ResNet-50 [10]. As MobileNetV2 and
ResNet-50 are multi-branch networks, we apply both branch pruning
and channel pruning to them. We randomly select 25 images of each
class from the training set as extra validation dataset for sub-structure
search. Similar to the setting on CIFAR-10, after each sub-structure
selection step, we finetune the pruned network for 2 or 3 epochs with
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a constant learning rate of 0.0001 (short-term finetune). Once we ob-
tain the final pruned network which meets the resource constraint, we
finetune it for 50 epochs on the whole training dataset with a cosine
learning rate starting from 0.01 (long-term finetune). Table 2 shows
the results on ImageNet.

Model Method FLOPs Top-1 Acc
MobileNetV1 0.75x[13] 325M 68.4%

AMC6[12] 294M 70.5%
NetAdapt[30] 284M 69.1%

MetaPruning[20] 281M 70.6%
Ours(F) 285M 70.6%

MobileNetV2 0.75x[26] 220M 69.4%
AMC[12] 220M 70.8%

MetaPruning[20] 217M 71.2%
Ours(CF) 216M 71.0%
Ours(F) 220M 71.5%

ResNet-50 SSS[16] 3.5B 75.4%
Ours(C) 3.4B 76.6%
SSS[16] 2.8B 74.2%
SFP[11] 2.9B 75.1%

ThiNet-70[23] 2.9B 75.8%
MetaPruning[20] 3.0B 76.2%

Ours(CF) 2.8B 76.4%

Table 2. Results on ImageNet under FLOPs constraint. Here, M/B in
FLOPs column means million/billion (106/109), respectively. For results on

MobileNet, 0.75x denotes the uniform baseline in this paper. (C) denotes
result only applying coarse-grained block pruning, (F) represents the result

applying only fine-grained channel pruning, and so on.

ResNet-50 For original ResNet-50, our algorithm firstly achieves
a FLOPs reduction of 16.1% by block selection with a top-1 accuracy
of 76.6%. Compared to SSS[16] leveraging L1-norm to prune block-
s, we achieve a higher top-1 accuracy under the same FLOPs reduc-
tion. Different from the observation on CIFAR-10 dataset, we find
that blocks in the third stage are pruned the most, which is also quite
different from the results of SSS[16]. We further apply the channel
pruning on the pruned ResNet-50 and ahieve a FLOPs reduction of
31.7% with only 0.2% top-1 accuracy drop. In contrast to SSS[16]
under the same FLOPs, our algorithm still achieve a higher top-1 ac-
curacy. Note that our algorithm achieves a better trade-off between
width and depth on ResNet-50 rather than only a shallower one. Fig-
ure 3 shows the width of each block in our pruned ResNet-50. Dur-
ing the channel pruning, we find that channels in the last two stages
are more likely to be pruned than earlier stages. Compared with oth-
er pruning method, SFP[11], ThiNet[23] and MetaPruning[20], our
MetaSelection achieves a higher top-1 accuracy under the similar
FLOPs reduction.

MobileNetV1 MobileNetV1 is a single branch network, so we on-
ly apply channel selection on MobileNetV1. Due to the use of sepa-
rable convolution, we only need to select the 1 × 1 convolution, the
corresponding depthwise convolution will be removed as well. Un-
der the 50% FLOPs resource constraint, the original uniform 0.75x
baseline has a top-1 accuracy of 68.4%, our pruned MobileNetV1
achieves 70.6% top-1 accuracy. Compared to other AutoML pruning
methods, AMC[12], NetAdapt[30], MetaPruning[20], our MetaSe-
lection also produces superior or comparable results.

6 We report the result of AMC on MobileNetV1 according to the released
model on AMC project page.
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Figure 3. This figure shows the widths of residual blocks in our pruned
ResNet-50. Original ResNet-50 consists of 16 residual blocks with

bottleneck (1× 1 conv – 3× 3 conv – 1× 1 conv). For channel selection,
we only prune the intermediate layers of the residual block (the first two
convolutional layers). The 7th, 11th, 12th blocks are removed during the

block pruning, so the widths of these blocks are 0.
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Figure 4. This figure shows the widths of the intermediate layers in our
pruned MobileNetV2. Original MobileNetV2 consists of 17 blocks, while

0-th denotes the first convolutional layer in the network.

MobileNetV2 MobileNetV2 uses inverted residual block as build-
ing block, thus, we first apply block selection to compress the depth
of MobileNetV2. Under the 70% FLOPs constraint, our MetaSelec-
tion achieves a top-1 accuracy of 71.0% with both block and channel
pruning. During the search process, only one block is pruned after
the block selection, which we conjecture that MobileNetV2 is more
sensitive to backbone reduction than ResNet due to the use of in-
verted residual block and separable convolution (MobileNetV2 only
contains 3.4M trainable parameters vs 25.6M of ResNet-50). So we
further prune MobileNetV2 with only channel pruning, and achieve
a top-1 of 71.5% under the 70% FLOPs constraint. During the chan-
nel selection, we find that channels in the downsampling blocks are
preserverd more than other inverted residual blocks. Figure 4 shows
the width of each block in our pruned MobileNetV2. Compared to
AMC[12] and MetaPruning[20], our MetaSelection produces supe-
rior or comparable results.
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4.3 Results on ImageNet under latency constraint
Setting In this experiment, we apply our algorithm on Mo-

bileNetV2 under the latency constraint. We directly measure the la-
tency on the targeted I5-8400 CPU used in the fitness evaluation
rather than using a look-up table, other settings are similar with ex-
periments under FLOPs constraint.

Results Table 3 shows the results on ImageNet under latency con-
straint. As a matter of experience, there is always a gap between the-
oretical (FLOPs) and realistic (latency) speedup. Thus, we directly
take latency as the resource constraint. For simplicity, we only ap-
ply block pruning and directly measure the latency on CPU with a
batch size of 32. Our MetaSelection prunes 5 blocks and 7 blocks
respectively to meet the latency constraint and remains 69.8% and
65.3% top-1 accuracy. Under the same latency constraint, our algo-
rithm achieves a higher top-1 accuracy.

Model CPU Lat. (ms) GPU Lat. (ms) Top-1 Acc
0.75x 16.53 0.67 69.4%
Ours 15.46 0.65 69.8%
0.5x 10.13 0.58 64.4%
Ours 10.59 0.61 65.3%

Table 3. Results of MobileNetV2 on ImageNet under latency constraint.
0.75x and 0.5x MobileNetV2 is the uniform baseline in our implementation.
The latency is measured on I5-8400 CPU and TITAN XP GPU with a batch

size of 32.

4.4 Analysis
Effect of elite size In our MetaSelection, we use a Top-K selec-

tion strategy and reproduce offsprings using the information of par-
ents. The quality of offsprings is affected by the size of parents (elite
size), which would affect the search efficiency. Hence, we conduct
several experiments with different values of K on CIFAR-100 on a
modified VGG-11, and record the best fitness after evolution (Figure
5, left). All populations evolved for the same generation and explored
the same amount of new individuals at each step. As shown in the fig-
ure, elite size of 15 is the most efficient under the constraint of total
exploration amount.

Effect of population size In EA, larger populations could explore
the search space more thoroughly, which helps EA reach better op-
tima. However, the exploring direction is updated at each step (the
quality of parents), we need to figure out the most effective popu-
lation size under the same exploration amount (Figure 5, right). As
shown in the figure, exploration size of 25 is the most efficient val-
ue. Although populations have the similar performance while explo-
ration size is over 25, however, under the constraint of total explo-
ration amount larger population also has a lower efficiency.

Sensitivity of α In the search process, we use a hyper-parameter
α, which refers to the step size of each sub-structure selection to bal-
ance the accuracy loss and resource constraint. We conduct several
experiments on CIFAR-10 to figure out the sensitivity of α with dif-
ferent values on a plain CNN with 15 layers (each layer consists of
32 channels). As shown in figure 6, it can be observed that with the
increase of α, the remaining FLOPs and accuracy reduce linearly. In
this paper, we use the value of 1.0 for all the experiments.
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Figure 5. Dependence on elite size and exploration size. All the
experiments are conducted on a modified VGG-11 on CIFAR-100. All the

populations explore for the same amount of new individuals, which is set to
1500. For the experiments on elite size K, we set mutation size and PDC

size n = m = 15 and maximum generation N = 50. For the experiments
on exploration size (value of n and m), we set elite size K = 15 and

maximum generation N = 1500
n+m
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Figure 6. Sensitivity of α. The remaining FLOPs and accuracy without
finetuning using different trade-off of α. α satisfies nice monotonicity

property (larger value leads to larger compression step size).
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Figure 7. Comparison between different reproduction strategies. All the
experiments are conducted on a modified VGG-11 on CIFAR-100. Our
proposed PDC has a significant advantage in speed of convergence and

performance.
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Comparison with other reproduction strategies In this paper,
we propose probability distribution crossover (PDC) to replace the
normal crossover. We conduct several experiments to figure out the
effectiveness of our PDC. In addition, we only use the elite set to gen-
erate new offsprings at each step, it may lead to some local minima.
Thus, we also conduct an experiment to compare the performance
between our Top-K selection and tournament selection. In summary,
we conduct several ablation experiments to compare the performance
of following reproduction strategies to figure out the effectiveness of
ours:

1. Original strategies used in our EA search;
2. Replacing PDC with single-point crossover;
3. Replacing PDC with two-point crossover;
4. Replacing PDC with uniform crossover;
5. Replacing Top-K selection with tournament selection.

The results are shown in figure 7. Under the same constraint of total
exploration amount, our reproduction strategy is the most efficient
one. Compared with standard crossover, our PDC has a faster speed
of convergence. As our observation, standard crossover only uses the
information of two parents and more likely to generate a repeated
individual at later generations, while PDC combines all the informa-
tion of elites and uses probability to generate new individual which
has a higher ability of exploring new individuals. In addition, PDC
needs the information of elites to measure the exploration direction,
which takes benefits from Top-K selection, so it is easy to explain the
superiority of our Top-K selection over tournament selection.

Diff. Constraint Mean Acc. Variance
Easy Ori. 84.08% 0.006

HC 33.68% 0.051
SC 51.62% 0.036

Hard Ori. 55.73% 0.015
HC 19.49% 0.028
SC 32.79% 0.030

Table 4. Accuracy changes of 1000 classes after pruning with soft/hard
constraint of 75% FLOPs without long-term finetuning on MobileNetV1.
The classes is divided into two difficulty levels. Ori. denotes the original

performance without pruning, HC/SC means pruning under hard/soft
constraint, respectively. The generalization ability on easy classes becomes

worse and unstable under hard constraint.

One step with hard constraint or iteratively with soft constrain-
t With the flexibility of evolutionary algorithm, there are two ways
to deal with the resource constraint. The first way is to obtain the
qualified result with hard constraint (HC) in one-step, while the sec-
ond way is to progressively prune the network with soft constraint
(SC) until meeting the resource constraint. Therefore, we carry out
several experiments to analyse such two solutions. We first prune the
MobileNetV1 with a resource constraint of 75% FLOPs. The origi-
nal 1000 classes are divided into two difficulty level according to the
accuracy (608 easy classes: accuracy over 75%; 392 hard classes:
others). We further observe the accuracy changes after sub-structure
search. As shown in table 4, the accuracies become to be imbalanced
under HC, which means the pruned network begins to lose its gen-
eralization capacity. Although the accuracies under SC also appear
to be imbalanced, the overall variance is much less than that under
HC on easy classes. The final accuracy after finetuning also shows

the same phenomenon. However, such a problem reduces a lot on a
heavy model like ResNet-50. After pruning with a HC of 75% FLOP-
s, the pruned ResNet-50 still has a top-1 accuracy of 56.7% without
finetuning. And the finetuned top-1 accuracies of SC and HC only
have a margin of 0.2%. We conjecture that lightweight networks like
MobileNet have higher utilization of parameters which are more sen-
sitive to the reduction. Thus, for stability we progressively prune the
network with soft constraint and finetune for a few epochs after each
search step.

Stability of EA process In our MetaSelection, the sub-structure
selection is based on EA, which is a stochastic process, so the results
may vary every execution. Thus, we test the stability of the EA pro-
cess on ResNet164 and PlainCNN on CIFAR-10 for block/channel
selection. All the experiments are repeated 5 times with different ran-
dom seeds, start with the same pre-trained model and prune for one
step with soft resource constraints. The results are shown in table 5.
The results show the stability of our method.

Model FLOPs Reduction Accuracy
PlainNet 13.07% (0.705) 90.33% (0.048)

ResNet-164 27.78% (1.372) 94.87% (0.014)

Table 5. Stability experiments for EA process. Each experiment runs for 5
times and reports the mean and variance of FLOPs reduction and finetuned

accuracy.

5 Conclusion and future work
In this paper, we propose an AutoML pruning method, MetaSelec-
tion, to adaptively prune the neural networks. In our method, we re-
formulate the network pruning problem from the view of subset se-
lection. To solve this combinatorial optimization problem, we intro-
duce an evolutionary algorithm. Different from prior AutoML prun-
ing methods, we simultaneously select the pruning rate and channels
globally. In addition, to tackle the high computational complexity, we
propose a coarse-to-fine pruning strategy and a modified recombina-
tion strategy to further search acceleration. We demonstrate promis-
ing results on both heavy and lightweight networks through experi-
ments.

In the future, we plan to combine our MetaSelection with other
compression algorithm, e.g., low-precision weights and quantifica-
tion, to obtain a higher compression performance. What’s more, it is
also worth exploring to apply our MetaSelection in other applications
rather than image classification, such as object detection and image
segmentation.
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