
Automated Verification of Social Law Robustness for
Reactive Agents

Alexander Tuisov1 and Erez Karpas2

Abstract. Coordinating agents in a multi-agent system is an inter-
esting and important challenge. One of the most effective methods of
coordinating multiple agents is using a “social law”, which restricts
some possible behaviors in order to ensure every agent can achieve
its goal. Recent work has connected social laws with automated plan-
ning, and shown how to verify if a given social law is robust, that is,
ensures each agent can achieve its goal regardless of the plans cho-
sen by the other agents. This prior work assumed the agents choose
a plan offline, and never modify it in response to the other agents’
actions. In this paper, we address reactive agents, that is, agents that
can reconsider their course of action during execution. This setting
presents a new challenge, as agents now have the possibility of en-
tering an infinite loop (a livelock) in which each agent replans in the
same way in response to the other agents. We show how to verify if
a given social law is robust in such a setting, and our main contribu-
tion is a compilation which eliminates the need to keep track of each
agent’s current plan and constitutes a backbone of the verification
algorithm.

1 Introduction
Systems with multiple autonomous agents are becoming more and
more common (e.g., in robotic fulfillment centers) and will become
more so in the future (e.g. autonomous cars, drone delivery). Design-
ing such systems is very challenging; one of the main reasons for
this is the need to coordinate all of the agents operating in the same
shared environment.

Several approaches for coordination have been explored in the
past. One possibility is to use a centralized controller, which con-
trols the actions of all the agents (for example, see [19]). However,
this centralized control is not feasible for a large number of agents,
especially when they are owned by different entities (as is the case
for autonomous cars). Another approach is to allow each agent to act
autonomously, and devise “rules of encounter” for when two agents
come into conflict, which usually requires some negotiation between
the agents [8]. In this paper, we follow a third approach, of enacting
a “social law” [23] which restricts the behavior of the agents in order
to ensure each agent can achieve its own goal. One of the main ad-
vantages of social laws is that they do not require any communication
between the agents.

Previous work [10, 17] has shown how to verify if a given social
law is rationally robust, that is, ensures that each agent can achieve
its goal regardless of the (goal-achieving) plans chosen by the other
agents. However, the kind of robustness described in these works
is extremely strict — it requires every plan chosen offline by every
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agent to work, regardless of what every other agent is doing. Impor-
tantly, this assumes that agents are blind, in the sense that they never
change their plan, regardless of what they see the other agents doing.
This is an extremely strong requirement, and has limited real-world
applicability.

In this paper, we propose a new model, in which agents are reac-
tive, that is, they are allowed to replan if their current plan is going
to fail. We begin by formulating the execution and replanning model
more precisely. We then propose a suitable definition of robustness
for this model, and discuss the possible failure modes under this new
model.

1.1 Contribution Statement
The contributions of this paper are threefold: first, we formalize the
notions of social laws and reactive robustness. Second, we charac-
terize the conditions under which a given social law is reactively ro-
bust, and describe a (prohibitively large) search space for finding the
counterexample to the robustness. Our third contribution is an effec-
tive search procedure, which we show does not have to traverse this
large search space, but a much more compact one.

2 Background
2.1 MA-STRIPS
Following [4], we define an MA-STRIPS formalism as a quadruple
Π = 〈F, {Ai}ni=1, I, {Gi}ni=1〉 where F is a set of predicates, Ai is
a set of actions for agents numbered 1 . . . n, I ⊆ F is the initial state
and Gi ⊆ F is the goal of agent i. Each action a ∈ Ai is a triplet
〈pre(a), add(a), del(a)〉, where pre(a) ⊆ F is the precondition for
performing a, and add(a), del(a) ⊆ F are the add and delete effects
of a respectively. Applying (or executing) action a to a state s transi-
tions the system to a new state s′, where s′ := (s\del(a))∪add(a).
For brevity, sometimes we refer to 〈add(a), del(a)〉 as eff(a).

In the spirit of [10] we enrich the MA-STRIPS formalism by
allowing some preconditions to be marked as waitfor, and by do-
ing so, assume our agents have the ability to wait and do noth-
ing. For each action a we define a set of waitfor preconditions
waitfor(a) ⊆ pre(a) with the following semantics: if an agent is
due to execute a and some f ∈ waitfor(a) is not fulfilled, the agent
performs action wait = 〈∅, ∅, ∅〉 instead of applying a.

2.2 Social laws
Social laws are sets of rules that regulate the behavior of agents, such
that a certain level of coordination is enforced upon the otherwise
”selfish” agents. Such rules exist in human society [21] as well as in
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artificial systems [24, 15]. Note that social laws should forbid unde-
sired behavior, but cannot add new capabilities to agents, or remove
their goals.

Given a social law, one needs a way to assess how well it pro-
motes the implicit coordination of agents. Karpas et al. [10] pro-
pose to check a social law for rational and adversarial robustness
for tasks with MA-STRIPS as an underlying formalism. Rational ro-
bustness was defined as follows:

Definition 1. Rational Robustness - A social law l for multi-agent
setting Π = 〈F, {Ai}ni=1, I, {Gi}ni=1〉 is rationally robust iff: for all
agents i, for all individual solutions πi of Π, for all action sequences
π resulting from arbitrary interleaving {πi}ni=1, G1 ∪ · · · ∪ Gn is
achieved.

Enforcement of a rationally robust social law ensures that every
agent can plan offline with no regard to the plans and actions of the
other agents, and is still guaranteed to eventually reach its goal. Note
that this requirement is very strict, as it assumes each agent is exe-
cuting the plan it came up with offline with its “eyes closed”. In this
paper we stick to robustness as a quality certificate of a social law,
but we attempt to derive a new, more liberal, notion of robustness.

Also, note that Definition 1 uses the notion of ”individual solu-
tions”. These are produced by agents, where each agent solves a plan-
ning problem called the single agent projection. As it was defined in
[10]:

Definition 2. Rational single agent projection - Given a multi-agent
setting Π = 〈F, {Ai}ni=1, I, {Gi}ni=1〉, rational single agent projec-
tion for agent i is a planning task Πi = 〈F,Ai, I, Gi〉.

The individual solutions produced by this single agent projection,
however, are very restricted. For example, consider an agent that has
its path blocked by another agent in the initial state. It will fail to
produce a plan, even if the precondition demanding clear passage is
waitfor. The ability to replan during execution only exacerbates the
problem, since the passage has to be clear at any time point that one
of the agent replans, otherwise their planing will fail. In Section 3
we address this problem, and suggest a more suitable single agent
projection.

2.3 Labeled Transition System
In this work we also make use of labeled (or named) transition sys-
tems. As defined by Keller [11], a labeled transition system is a tuple
〈Q,→,Σ〉, where Q is a set of states,→ is a binary relation on Q,
also called the set of transitions, and Σ is a set of labels for these
transitions. For any q, q′ ∈ Q we denote q σ∈Σ−−−→ q′ if (q, q′) ∈→ is
given a label σ. We say that σ is deterministic if there exists only one
q
σ−→ q′ for a given q and σ, and the transition system is deterministic

if all σ ∈ Σ are.

2.4 State Space Search
Our tool of choice for solving the task at hand is state space search
[22]. For the purpose of this work, it can be defined as a tuple
〈S,A,Action(s), Result(s, a), Goal(s)〉 where:
• S is a set of states the system can be in.
• A is a set of action labels.
• Action(s) is a function that establishes the set of actions applica-

ble in some s ∈ S.
• Result(s, a) is a function determining the state reached by apply-

ing action a ∈ A in a state s ∈ S.

• Goal(s) a function determining whether a given state s ∈ S is a
goal of the search.

3 Problem Setup
3.1 Social law formalization
Social laws are the main subject of this work, thus we start our dis-
cussion from defining a social law in a rigorous way. We formalize
social laws in terms of MA-STRIPS tasks as follows:

Definition 3. Social law - A social law l is a transformation of an
MA-STRIPS task Π = 〈F, {Ai}ni=1, I, {Gi}ni=1〉 to a modified task
Πl = 〈F l, {Ali}ni=1, I

l, {Gli}ni=1〉 such that:
• F l is a set of predicates. F ⊆ F l, i.e. the social law is only al-

lowed to add predicates.
• {Ali}ni=1 is a set of actions for each agent i. ∀al ∈ Ali ∃!a ∈ Ai :

– pre(a) ⊆ pre(al)
– waitfor(a) ⊆ waitfor(al) ⊆ pre(al)
– add(a) ⊆ add(al)
– del(a) ⊆ del(al)
– (add(al) \ add(a)), (del(al) \ del(a)) ⊆ F l \ F
i.e. the social law is not allowed to add actions, remove precon-
ditions of actions, and to add effects affecting predicates of the
original problem, but is allowed to mark preconditions as waitfor.

• We require I ⊆ Il ⊆ F l, so that the original initial state is pre-
served.

• {Gli}ni=1 ⊆ F l. We require that ∀i : Gi ⊆ Gli, i.e. the social law
is not allowed to remove goals.

The reasoning behind this definition is simple: the social law pro-
motes coordination by restricting actions and adding goals, while not
allowing agents to exhibit previously impossible behavior. Since we
assume the agents can wait, the labeling of some preconditions as
waitfor is also allowed.

3.2 Single Agent Projection
Since the overall goal of the social law is to decompose the central-
ized search problem into many much simpler, single-agent search
tasks, we have to describe in detail the appropriate single-agent pro-
jections. Sadly, a straightforward attempt to use the single agent pro-
jection as it appears in Definition 2 is problematic. It precludes the
agents from devising plans that include an action that has a waitfor
precondition on some fact which is false in the initial state, e.g. to
wait for some other agent to move out of the way. Thus, it may put
severe limitations on the usability of reactive agents, since they may
plan more than once during the execution.

As an alternative, we propose the following single-agent projec-
tion of the problem:

Definition 4. Reactive single agent projection - given an MA-
STRIPS problem Π = 〈F, {Ai}ni=1, I, {Gi}ni=1〉, the reactive single
agent projection for agent i is the planning task Π′i = 〈F,A′i, I, Gi〉,
where A′i = {〈(pre(a) \ waitfor(a)), add(a), del(a)〉 | a ∈ Ai}

Informally, we ignore the waitfor preconditions of the actions to
capture the effects of the environment and other agents that are out
of i’s control. For example, by ignoring the waitfor precondition for
having some resource for an action, an agent may plan regardless of
that resource currently being in use by others. This projection will
allow the agent to wait until said resource is available. Note that this
projection solves the problem we raised in Section 2.2.
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In what follows, we say ”agent i (re)plans from state s” as a short-
hand for ”Solving i’s reactive single agent projection where the initial
state is s”. Likewise, we sometimes say ”i’s plan” as a shorthand for
”solution to i’s reactive single agent projection”.

3.3 Planning and execution model

We now describe the planning and execution model for how the
agents operate, which allows us to define a new notion of robustness.
We distinguish between a number of different settings with regards
to replanning while acting.

First, and perhaps the most obvious setting is the one where re-
planning is forbidden altogether, i.e. every agent plans exactly once
before the start of execution. This model is used to derive the notion
of rational robustness as presented in Definition 1.

Second, we mention the setting where the agent is allowed to re-
plan after its every action. Robustness with respect to this model will
be denoted as anytime robustness. Note that we do not put any limi-
tations on the agent’s plan, thus in many domains the setting contains
a trivial livelock, akin to the Buridan’s ass dilemma [25].

The next type of model is on a spectrum between the options pre-
sented earlier (never allow replanning and always allow it), as here
we allow the agent to replan only on need, defined as a state where
the agent deduces that the original plan is no longer valid, thus the
agent must replan. Replanning on need presents a wide range of pos-
sible rules for deducing where the need appears, and such an infer-
ence would probably require combining multi-agent reasoning and
plan recognition about other agents’ actions, which is outside of the
scope of this work.

Thus, we would like to focus our discussion here on a specific
sub-case of replanning on need: reactive replanning. In this setting,
the agents replan only when they cannot execute the next action in
the original plan, i.e. the next action in the plan has an unfulfilled
non-waitfor precondition when the agent is activated by an external
scheduler. This allows us to forgo replanning in situations where the
missing precondition of an un-executable action was restored by an-
other agent. Robustness with respect to this model will be denoted as
reactive robustness.

To present a mathematical definition of robustness, we introduce
some auxiliary notation and definitions. For a multi-agent setting
Π = 〈F, {Ai}ni=1, I, {Gi}ni=1〉, we present a transition system
which allows us to reason about agents’ plans, which we must do
in order to determine when agents are allowed to replan.

This transition system extends the transition system defined by Π
by adding an action replani for each agent i (in addition to the “reg-
ular” actions Ai), which allows the agent to change its current plan.
replani is only applicable when the preconditions of i’s next planned
action do not hold. To account for each agent’s plan, we also intro-
duce a variable plani, which holds the current plan of agent i. Thus,
the global state of the system is 〈s, π1, . . . , πn〉, where s ⊆ F de-
scribes the state of the world, and will be called the world state. πi
is the not-yet-executed suffix of the current plan agent i intends to
execute, and we will refer to it as the internal state of i.

The need to keep track of agents’ internal states is best illustrated
by an example as given in Figure 1. One of the modes of breaching
robustness is the existence of a cycle in the execution system, where
agents can repeat same sequences of actions ad infinitum, without
ever reaching their goals (see Definition 8 ahead). In this example,
although the same world state is reached twice (with different inter-
nal states), there exists no cycle agents can be caught in indefinitely.
This means, the global state g carries additional information, unin-

ferrable from the world state alone.

1. Both agents plan. 2. Agent 2 makes a move.

3. Agent 1 comes to a point
where it needs to replan.

4. Same world state as (2) with
different internal states — no
livelock.

Figure 1: Why Internal States Matter. Red arrow is the plan for agent
1, blue arrow is the plan for agent 2.

We now describe the possible transitions in this system from some
global state g = 〈s, π1, . . . , πn〉. First, any agent i can be chosen
to act next, with the exception of agents who are waiting for some
waitfor precondition, as described below. Assume agent i’s current
plan is πi = 〈ai1, ai2, . . . , aim〉. We distinguish between three cases:

1. If ai1 is applicable in the world state s, that is, pre(ai1) ⊆
s, then agent i can execute ai1, and is not allowed to re-
plan. The system then transitions to the state 〈(s \ del(ai1) ∪
add(ai1)), π1, . . . π

′
i, . . . , πn〉. Since the ai1 was executed, we up-

date i’s plan to be π′i = 〈ai2 . . . aim〉.
2. If the non-waitfor preconditions of ai1 hold in s, but some of the

waitfor preconditions do not, that is, (pre(ai1) \ waitfor(ai1)) ⊆ s
and pre(ai1) 6⊆ s, then agent i must wait, and another agent will
act.

3. If some of the non-waitfor preconditions of ai1 do not hold in s,
that is, (pre(ai1) \ waitfor(ai1)) 6⊆ s, then agent i is required to
replan instead of performing ai1. The system then transitions to
the state 〈s, π1, . . . , π

′
i, . . . , πn〉 where π′i is a possible plan for

agent i in the single agent projection from world state s.

There are two facts worth mentioning here: first, an agent is required
to apply the first action in its not-yet-executed suffix of a plan. Sec-
ond, in order for the system to be deterministic, we need to specify
the π′i explicitly every time an agent replans. Formally:

Definition 5. Reactive Transition System - given MA-STRIPS task
Π = 〈F, {Ai}ni=1, I, {Gi}ni=1〉 define the reactive transition system
of Π as a labeled transition system 〈Q,→,Σ〉 where:
• Q : {〈s, π1 . . . πn〉 | s ⊆ F , ∀i : πi ∈ 〈ai1, . . . , aim〉, aij ∈ Ai}
• Σ = ∪ni=1(Ai ∪ {replani(π′i) | π′i ∈ 〈ai1, . . . , aim′〉, aij ∈ Ai})
• →: g

a−→ g′ iff g, g′ ∈ Q, a ∈ {ai1 | i = 1 . . . n}, and a transi-
tions from g to g′ as described in cases 1 - 3 above.

Note that the number of legal transitions from some states in this
transition system is exponential in |F |, because of the need to specify
π′i. This presents a computational challenge for reasoning about the
reachability in this system. In Section 4 we present a way to avoid
this problem.

We define a trajectory in the transition system described above as
follows:
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Definition 6. Valid Trajectory - given MA-STRIPS task Π =
〈F, {Ai}ni=1, I, {Gi}ni=1〉, and its reactive transition system
〈Q,Σ,→〉, a valid trajectory is a state – action sequence
(g0, a1, g1, a2, . . . an, gn) such that:
• g0 = (I, π1 . . . πn) where πi is agent i’s plan from I .

• ∀i : gi
ai+1

−−−→ gi+1

Then reactive robustness can be described as follows:

Definition 7. Reactive Robustness – A social law l for multi-agent
setting Πl = 〈F l, {Ali}ni=1, I

l, {Gli}ni=1〉 is reactively robust iff: for
all agents i, for all valid trajectories ξ, execution of ξ achieves Gl1 ∪
· · · ∪Gln.

Note that the definition requires any sequence to lead the agents
to their goals, which means any proof of robustness will have to as-
sume an adversarial scheduler deciding which agent will act next,
and which plan each agent chooses during replanning.

Let us examine the relation between rational and reactive robust-
ness. We will establish a hierarchy of robustness types by proving the
following theorem:

Theorem 1. For any problem Π and social law l, rational robustness
is strictly stronger than reactive robustness.

Proof. Rephrasing the theorem, every Π under l that is rationally ro-
bust is also reactively robust, but not vice versa. If Π under l is ratio-
nally robust, it is guaranteed that any set of the initial plans π1 . . . πn
will be executed to the end without a replanning event. Thus, any
valid trajectory ξ will be an arbitrary interleaving of agents’ plans,
guaranteed to achieve Gl1 ∪ · · · ∪Gln by rational robustness.

However, we present an example where reactive robustness 6⇒ ra-
tional robustness. Consider the following task: agents {Alice,Bob},
F = {r, g1, g2}, GAlice = g1, GBob = g2, I = r, AAlice =
{a1}, ABob = {a2, a3}, where a1 = 〈∅, g1, r〉, a2 = 〈r, g2, ∅〉,
and a3 = 〈∅, g2, ∅〉. This task is not rationally robust, since if
πAlice = (a1), πBob = (a2) and Alice performs a1 first, Bob’s plan
will fail. On the other hand, Bob may replan and perform a3 instead,
achieving g2. Thus achievement of {g1, g2} is guaranteed, i.e. this
task is reactively robust.

3.4 Types of failure

Having settled on the execution model, we need to explore in detail
what can disrupt robustness. We now discuss the types of failure that
could occur during execution. Reactive robustness can be violated in
a few ways:
• Deadend - an agent should act but does not have a defined action

to execute for the current state, i.e. an agent cannot execute the
next action from its current plan, and the single agent projection
is unsolvable. 3

• Deadlock - A state where no agent can perform any action, i.e.
every agent is either waiting or finished and at least one agent is
not finished.

• Livelock - a condition where one or more agents change the state
of the system continuously, but no agent makes progress towards
its goal. The oscillations of the system states continue ad infini-
tum, but the goal of some agents is never achieved.

3 It is possible that in the future other agents’ actions can make i′s plan for
the goal possible again, but we still regard a possibility of a deadend as a
violation of robustness.

Note that the types of failure in this work differ from those pre-
sented in [10]. A rationally robust system cannot enter a livelock,
since no replanning occurs. On the other hand, in a reactive system
an agent cannot fail because of a missing precondition, and will re-
plan instead of declaring failure in that case. Formally, we define
them as follows:

Definition 8. Consider a valid trajectory ξ. We define the above
cases as follows:

Livelock - ξ leads to a livelock if it is infinite.
Otherwise, ξ is finite. Denote its last state by gn.
Deadend - ξ leads to a deadend if at gn there exists an agent i such

that i’s next planned action πi(gn)[1] is not applicable in the world
state s(gn), i.e. (pre(πi(g

n)[1]) \ waitfor(πi(gn)[1])) 6⊆ s(gn),
and i’s single agent projection is unsolvable.

Deadlock - ξ leads to a deadlock if there are no transitions from
gn and G1 ∪ · · · ∪Gn 6⊂ s(gn).

Since we want our robustness verification to be complete, we need
to show that the aforementioned failures are the only possible types
of failure in our setting. This is done by stating and proving the next
theorem:

Theorem 2. Let l be a social law for multi-agent setting Πl =
〈F l, {Ali}ni=1, I

l, {Gli}ni=1〉. If there does not exist a valid trajec-
tory ξ which leads to a deadend, deadlock, or livelock, then Πl is
reactively robust.

Proof. Consider a valid trajectory ξ formed by complete execution
of a reactive transition system. If it is infinite - the system is in a
livelock by definition. Otherwise, let us examine the final state gn of
ξ. If the system is not in a deadlock, there are two possibilities:
• All the agents have achieved their goals
• There exists at least one agent i that is not waiting or finished,

which means it can perform an action. On one hand, if i’s next
planned action is applicable - i will perform it, contrary to our
assumption that gn was a final state of the system. On the other
hand, if i’s next action is not applicable - i will replan. If the re-
planning yielded a new plan - the first action of this plan will be
executed, still contrary to our assumption that gn is a final state. If
the replanning did not yield a plan - the system is in a deadend.

To summarize, gn can only be the final state of the system, if a system
is in a deadlock, deadend, or every agent had achieved its goal.

As we have established the failures that lead to a breach in robust-
ness, in the following section we propose a way to check whether
a given social law is robust by using state-space search, where the
aforementioned failure modes are the goals of the search.

3.5 Robustness Verification as Reachability
Problem

Having all theoretical groundwork covered, we can now describe re-
active robustness verification task as a graph reachability problem.
Our goal is to verify there exists a valid trajectory that leads to one
of three failure modes. This approach is similar to directed model
checking (for example, see [7]). Here we only describe the graph,
while in the next section we proceed to describe the full solution. We
now explain the vertices, edges, starting vertex and the goal vertices.

Vertices: Vertices in the graph correspond to the global states g
the system can be in. The starting vertex corresponds to the starting
state g0 as appears in Definition 6.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Edges: We create a directed edge between two vertices corre-
sponding to g, g′ if there exists action a such that g a−→ g′ as per
Definition 5.

Goals: We search for a counterexample to robustness, thus the
reachability goals correlate with the three modes of failure described
earlier. The checks for deadend and deadlock are straightforward and
done exactly according to Definition 8. We assume that the plans pro-
duced by the agents have no loops, therefore are of bounded length.
This restricts our transition system to be finite too. Thus, an infi-
nite execution, and therefore livelock, can form if and only if the
graph contains a reachable cycle. This directly correlates to the re-
sult shown shown by Patrizi et. al. [20] for planning with LTL goals.

Unfortunately, there number of global states (therefore vertices)
is n2|F |

, and the outdegree of each vertex can reach 2|F |. The sheer
size of the graph precludes us from using straightforward approaches
to solve the reachability problem. In the next section we show how
to overcome this obstacle.

4 Towards Solving the Reactive Robustness
Our main tool for solving the reachability problem described in
Section 3.5 is state-space search. However, the state space and the
branching factor are prohibitively large, thus a straightforward search
in that space will not work.

In order to achieve computational feasibility, we propose a much
smaller search space, with a much smaller branching factor while
preserving correctness. Specifically, we propose to search in the state
space of the original MA-STRIPS task (with some minor technical
additions), using only actions that correspond to the original actions
of the agents.

Recall that, as illustrated by Figure 1, checking for a livelock re-
quires keeping track of agents’ internal states. Additionally, we must
make sure that each action an agent executes is one it could have
planned to execute when it last replanned. Thus, in order to preserve
correctness, we use a sophisticated goal test, which checks whether
the sequence of actions which led to the current state is a valid trajec-
tory (Definition 6), and whether one of the failure conditions (Defi-
nition 8) occurs.

The complete compilation can be found in Section 4.2. However,
we first describe the most complex part of our approach, the planning
problem we use to check whether a given trajectory which visits the
same world state twice, is a real livelock.

4.1 Hindsight Intent Attribution
To detect a livelock without storing internal states explicitly, we say
that a trajectory leads to a potential livelock if it encounters the same
world state for the second time. We then check whether this is a true
livelock by finding a plan for each relevant point along the current
path where an agent replanned, which justifies the current path and
could lead to a livelock.

In more detail, we will require auxiliary definitions of three dis-
tinct states for each agent: s0

i , s′i, s
′′
i , and one common state: s. These

are defined as follows:
• s - a world state where a potential livelock occurred. By definition

of the potential livelock it is a world state that occurred more than
once during the execution. Therefore, we can divide the execution
to periods according to the visits to s, i.e. refer to the time point
of the last visit to the state s as t, and time point of a past visit as
t−1. We repeat this procedure for each past visit to s, so we allow
s to be visited between t− 1 and t.

• s0
i - the last state where agent i planned before t − 1. Can stem

from either i replanning or i planning for the first time in the initial
state.

• s′i - the state where agent i first invoked replanning after t− 1 and
before t.

• s′′i - the state where agent i last invoked replanning after t−1 and
before t. Can be the same as s′i if i replanned only once between
t− 1 and t.
Since true livelock is equivalent to reaching the same global state

for the second time, it is sufficient to show in a potential live-
lock that the system could have been in the same global state, i.e.
〈s, π1(st), . . . , πn(st)〉 = 〈s, π1(st−1), . . . , πn(st−1)〉.

From here on, we look at each individual agent i and reason
whether there is a possibility that πi(st−1) = πi(st). For that, we
divide the agents into three categories with regard to their behavior
between st−1 and st:
• Agents that did not perform any action between t− 1 and t : since

there was no action performed by those agents, their internal state
remains the same. These will be called irrelevant agents.

• Agents that performed some actions between t − 1 and t, but did
not replan in this interval : their internal state must have changed,
which means that if there is at least one agent in this category, s is
not a true livelock. These will be called advancing agents.

• Agents that have both performed actions and replanned between
t− 1 and t: for each such agent i we propose to create a planning
problem that has a solution if and only if πi(st−1) could have
been equal to πi(st). These will be called loop agents.
Any loop agent arrives at st−1 with the plan it conceived at s0

i .
The suffix of this plan is πi(st−1). A second time around, it arrives
at st with the plan it conceived at s′′i and has πi(st) as a suffix. This
means we have to check for the existence of two plans: one from s0

i

with some prefix up to s (which we will call πi(s0
i , s)) and suffix

πi(st−1), and a second plan from s′′i via s, whose prefix we denote
by πi(s′′i , s), such that their suffixes match. Of course, we also re-
quire the plans to be consistent with the actions already observed
(i.e., executed on the current path). Figure 3 provides graphical intu-
ition. We say that the state s had passed the hindsight intent attribu-
tion test iff such a pair of plans was found for every loop agent.

For each loop agent i independently, given its single agent pro-
jection Π′i and the states s, s0

i , s
′
i, s
′′
i we will construct a classical

planning problem Π′′i that will have a solution iff a pair of plans
as described above exists. First, we need both plans to have differ-
ent prefixes and the same suffix. We split the plans into 4 phases: in
phase 1 we follow the observed path (πi(s0

i , s)) from s0
i to s, and in

phase 2 we follow the observed path (πi(s′′i , s)) from s′′i to s. Then,
in phase 3, the plans merge and reach state s′i following the observed
path πi(s, s′i), and finally in phase 4, we diverge from the actions
that have been observed, and simply need to find a plan that reaches
the goal. To keep track of these separate plans, we create 2 copies
of the state variables. Actions in phases 1 and 2 affect only one of
these copies, while actions in phases 3 and 4 affect both copies. This
is similar to the GRD compilation [12], except with merging instead
of splitting. We denote the lengths |πi(s0

i , s)| by l1, |πi(s′′i , s)| by
l2, and |πi(s′′i , s)| by l3, and define the hindsight intent attribution
planning compilation in Figure 2.

To prove the correctness of this compilation, note that the exis-
tence of this pair of plans (e.g., a solution to Πi) indicates that it is
possible that πi(st−1) = πi(st) if the agent was acting alone. More-
over, by definition of s′′i we know that agent i did not replan from s′′i
to s, which means πi(s′′i , s) can be executed regardless of the plans
of the other agents. This decoupling gives us the ability to reason

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Given an single agent projection Π = 〈F,A′, I, G〉 and states s, s0i , s
′
i, s

′′
i , ,

create a classical planning task Π = 〈F ′′, A′′, I′′, G′′〉
• F ′′ = {f1, f2 | f ∈ F} ∪ {fin-ph-k | k ∈ {1, 2, 3}} ∪ {allow-aphk

j |
k ∈ {1, 2, 3}, j ∈ {1, . . . , lk}

• A′′ = {aphk
j | a ∈ A, k ∈ {1, 2, 3}, j ∈ {1, . . . , lk}}∪{aph4 | a ∈ A′}}

where:
– for k ∈ {1, 2}:

pre(a
phk
j ) = {fk | f ∈ pre(a)} ∪ {allow-aphk

j },
add(a

phk
j ) = {fk | f ∈ add(a)} ∪{

{allow-aphk
j+1} j < lk

{fin-ph-k, allow-a
phk+1
1 } j = lk

del(a
phk
j ) = {fk | f ∈ del(a)} ∪ {allow-aphk

j },
– pre(a

ph3
j ) = {f1, f2 | f ∈ pre(a)} ∪ {allow-aph3

j },

add(a
ph3
j ) = {f1, f2 | f ∈ add(a)} ∪

{
{allow-aph3

j+1} j < l3
{fin-ph-3} j = l3

del(a
ph3
j ) = {f1, f2 | f ∈ del(a)} ∪ {allow-aph3

j }
– pre(aph4 ) = {f1, f2 | f ∈ pre(a)} ∪ {fin-ph-3}

add(aph4 ) = {f1, f2 | f ∈ add(a)}
del(aph4 ) = {f1, f2 | f ∈ del(a)}

• I′′ = {f1 | f ∈ s0i } ∪ {f2 | f ∈ s′′i } ∪ {allow-aph1
1 }

• G′′ = {f1, f2 | f ∈ G} ∪ {fin-ph−3}

Figure 2: Hindsight Intent Attribution Planning Compilation

about each agent independently, as we can follow the already exist-
ing interleaving of the individual plans to achieve the loop we have
already observed. Thus, to reach the real livelock it is sufficient to:
a) find such a pair of plans for each loop agent and b) show there are
no advancing agents.

Figure 3: Graphical representation of the livelock loop from i’s point
of view. πi(s0

i , s) is in red, πi(s′′i , s) is in blue, common suffix
πi(st) = πi(st−1) is in green. Observed actions are in gray.

Theorem 3. Let s be some state with a potential livelock (that is,
search found a path π leading to s, and then looping back to s). Then
the hindsight intent attribution for path π is solvable for all agents i
iff there really is a true livelock possible from s.
Proof. If a true livelock is possible from s, it implies that there
exists a schedule of actions such that 〈s, π1(st), . . . , πn(st)〉 =
〈s, π1(st−1), . . . , πn(st−1)〉. This in turn implies that ∀i : i 6∈ ad-
vancing agents. Also, for each i ∈ loop agents, there exist two plans:
π1
i planned before t− 1 with suffix πi(st−1), and π2

i planned after
t− 1 and before t, with suffix πi(st) = πi(st−1). Moreover, pre-
fixes of those plans have been already executed, thus are compatible
with observed actions. Thus, ∀i : π1

i , π2
i is pair of plans that compose

a solution for the hindsight intent attribution search procedure in the
following way: from the points of the last replans before t − 1 and
t, the actions observed will be executed in their respective copy of
facts, until both copies arrive to s. From s, merge will be executed,
and after that, merged version of πi(st) will complete the solution.
We have shown a possible solution for each agent, therefore s passes
the hindsight intent attribution test.

Proving the other side of if and only if, assume s passed the hind-
sight intent attribution test. It means, ∀i ∈ agents : i 6∈ advancing
agents. For each i ∈ irrelevant agents trivially πi(st) = πi(st−1).
For each i ∈ loop agents there exist two plans found by the search
procedure: πi(s0

i , s) · πi(st−1) and πi(s′′i , s) · πi(st), where · de-
notes concatenation, and πi(s, s

′) denotes a path from s to s′.

Moreover, these plans are consistent with the observed actions, and
πi(st) = πi(st−1) by the correctness of the search procedure. This,
in turn, means that each loop agent could have chosen plan πi(s0

i , s)·
πi(st−1) in s0

i , and plan πi(s′′i , s) · πi(st) from s′′i , and still remain
consistent with the actions observed, independently of other agents’
plans. The independence comes from the fact that both πi(s0

i , s) and
πi(s

′′
i , s) were executed fully without replanning, i.e. there exists a

schedule such that ∀a ∈ πi(s
0
i , s), πi(s

′′
i , s), pre(a) are fulfilled

regardless of plans of other agents. Thus, there exists a schedule
s.t. (s, π1(st), . . . , πn(st)) = (s, π1(st−1), . . . , πn(st−1)), which
means true livelock is possible from s.

4.2 Complete Compilation

We present the complete compilation in Figure 4. In what follows we
explain in detail the states, actions, and goals:

States – We keep track of the world states in the set F , auxiliary
flags fini to denote that i had achieved its goal, and a vector of
previously encountered replanning events ~p along the path, which is
used in the hindsight intent attribution procedure described earlier.

Actions – we call the actions available to the planner
activate−action−ai, with the semantics of modelling the effect of
each ai available to the agents on the state.

Goals – The goal test examines a search node (as opposed to ex-
amining a state), and consists of two parts: in the first we verify that
a path to this node is justifiable, i.e. the agent could have planned to
execute the sequence of actions leading it to the node v(s). For that,
for agent i that performed ai leading to v(s) we check if there is a
single agent projection solution that starts at the state where i last
replanned, and has a prefix consistent with a’s observed actions. In
the second part of the goal test, we check for the failures from Defi-
nition 8. Every action may lead to a deadend, which is checked upon
application of each action. The precondition for declaring deadlock
follows Definition 8, and the precondition for declaring livelock is
arriving to potential livelock and passing the hindsight intent attribu-
tion test.

Note that this compilation is much more compact than a reacha-
bility problem described in 3.5, both in the size of the state space
and in the branching factor. The proof of correctness of the complete
compilation is quite voluminous, but it closely follows the structure
of the compilation itself, and is omitted for the sake of brevity. The
main point of the proof is that every solution of Πsearch is a valid
trajectory, and that the goals capture their respective modes of failure
correctly.

5 Empirical Evaluation

We have implemented the compilation described in Section 4, as well
as a custom state space planner. The classical planning tasks created
for the single agent projection and hindsight intent attribution were
solved using pyperplan4.

Following [10], we checked our compilation on the
BLOCKSWORLD and DRIVERLOG domains under the random
goal distribution procedure, where we created an instance with a
different goal set for each agent by allocating each goal to one
of the agents at random. Although a direct comparison to the
reports provided in [10] is unwarranted, as the rational and reactive
robustness are different conditions, we still can draw some parallels

4 https://bitbucket.org/malte/pyperplan
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Given an MA-STRIPS problem Π = 〈F, {Ai}ni=1, I, {Gi}ni=1〉, define a state
space search problem

Πsearch = 〈S,A,Action(s), Result(s, a), Goal(v(s))〉, where v(s) is a

• S: s = 〈F, ~p, {fini|i = 1 . . . n}〉, where ~p is the vector of replanning events
along the path, and fini is the flag signaling whether agent i achieved its goal.

• A: {activate−action−ai | ai ∈ {Ai}ni=1}.
• Action(s): activate−action−ai : is applicable if ¬fini.
• Result(s, a) – Given action activate−action−ai, resulting state s′ is con-

structed as follows:
– if ai is applicable in s, i.e. ((pre(ai) \ waitfor(ai)) ∈ F (s)) : s′ =
〈(F (s) \ del(ai)) ∪ add(ai), ~p(s), fini = True if Gi ⊆ (F (s) \
del(ai)) ∪ add(ai), ~p(s), fini = False otherwise 〉.

– if ai is not applicable in s:
∗ if i single agent projection is solvable: s′ = 〈F (s), ~p(s) · (i, s), fini(s)〉
∗ else: s′ = [s, ”deadend”].

• Goal(v(s)): declares v(s) as a goal if v(s) is justified and one of the following
is true:
– deadend happens:”deadend” in s.
– deadlock happens: Action(s) = ∅, G1 ∪ · · · ∪Gn 6⊆ F (s).
– livelock happens: s = s′ for some s′ on the path to v(s) and s passes hind-

sight intent attribution test.

Figure 4: Complete Compilation

BLOCKSWORLD DRIVERLOG
Problem Time (sec) Result Problem Time (sec) Result
9-0 1.49 deadend 1 0.01 robust
9-1 22.75 deadend 2 0.08 deadlock
9-2 12.5 deadend 3 0.06 deadend
10-0 82.07 deadend 4 0.11 robust
10-1 5.28 deadend 5 0.27 deadlock
10-2 170.40 deadend 6 0.43 deadlock
11-0 294.26 deadend 7 1.15 deadlock
11-1 – timeout 8 0.78 deadlock
11-2 – timeout 9 0.85 deadend
12-0 – timeout 10 0.91 robust
12-1 – timeout 11 0.77 robust

12 5.16 deadend
13 47.85 deadlock
14 16.99 deadlock
15 81.57 deadend
16 – timeout
17 – timeout
18 – timeout
19 – timeout

Table 1: Results on BLOCKSWORLD and DRIVERLOG domains with
300 seconds timeout

since experiments for both were run on the same computers. For
the BLOCKSWORLD domain, verifying reactive robustness is indeed
much slower, yet in DRIVERLOG, verifying reactive robustness is
sometimes faster (with the caveat that some problems were robust
under the reactive setting, yet not robust for the rational setting).

Since livelocks were not detected in these instances (not because
of lack thereof, just because other failures were encountered sooner),
we also created a custom set of problems where encountering a live-
lock is guaranteed, while no other failures exist. The domain is a
variant of grid navigation, where an agent can only move on a pre-
defined grid. Movement can be performed only to four adjacent tiles.
The agents are forbidden from moving to a tile occupied by another
agent, and have a goal of standing on a specific tile.

The set of problems we created features two agents, a corridor of
width 2 and of variable length. The agents start on the opposite cor-
ners of the corridor, and their goal is to switch places, as illustrated
by Figure 3. In Table 2 we show the running time of the planner until
livelock detection.

agent 1 . . . . . . . . . . . .
. . . . . . . . . . . . agent 2

Figure 3: Experimental setup - grid navigation domain

Typically, the deadend and deadlock detection occurs much faster
than livelock detection, thus for practical use it might be useful to
decompose the procedure into two separate steps, where the check
for livelock occurs only after no deadlock or deadend has been found.

Note that this evaluation is by no means exhaustive, but it shows
that our approach is feasible in practice.

corridor length 5 10 15 20 25 35 45
time (sec) 0.13 3.09 6.46 15.41 28.92 151.44 –

Table 2: Results on corridor problems with 300 seconds timeout

6 Related Work
Several techniques to tackle roughly similar tasks have been made in
the past, with varying degrees of success. Thus, here we provide a
quick overview of the existing literature in the field.

6.1 Multi-agent coordination as FOND
A popular approach to solving various multi-agent problems is to ex-
amine the system from an agent’s perspective. One can model the
behavior of other agents as a non-deterministic environment (for ex-
ample, see [16]), and use fully observable non-deterministic plan-
ning (FOND) to find a solution for a particular agent. Concerning the
systems robustness, one can deduce that if every agent has a strong
solution, i.e. a solution that succeeds with no regard to outcomes of
the non-deterministic action effects, the system is robust.

There are several approaches to single agent non-deterministic
planning, and here we will limit our discussion to two of these: con-
formant [5] and k-fault tolerant [6] planning.

Conformant planning is an approach to planning under uncertainty
that guarantees goal achievement regardless of observations, and by
extension, any combination of possible external actions. If every
agent in a multi-agent system has a conformant plan, then the even-
tual arrival of every agent to its goal is guaranteed. On the other hand,
k-fault tolerant planning is guaranteed to guide an agent to the goal
under the assumption that no more than k faults can occur during the
execution. Both k-fault tolerant and conformant planning tasks can
be solved using compilation to a heuristic search [9].

Both of these methods, however, are efficient only when there are
few possible outcomes for each action, while in multi-agent tasks
presented as FOND there can be a lot of different outcomes for some
actions. Moreover, in k-fault tolerant planning, some outcomes are
considered faults, while other are considered primary (or desired).
The compilation of k-fault tolerant planning to classical planning as-
sumes each outcome has one primary effect. This is different than
our setting, where other agent’s actions are their own. Likewise in
the multi-agent to FOND compilation, a fixed round-robin execution
order between the agents is assumed, which decreases the computa-
tional effort significantly, and can not be applied to reactive robust-
ness verification. Thus, these methods are of very limited use to us.

6.2 Robust normative systems
Agotnes et al. [1] explore robustness of normative systems. Norma-
tive systems are sets of constraints on agents’ behavior, and essen-
tially are a special case of social laws. Their notion of robustness
is different from what appears in our work: it originates from the
assumption that agents can choose not to abide by norms/laws im-
posed on the system. The authors proceed to explore different as-
pects of non-compliance and propose ways to deal with it, and define
k-robustness as a property of a normative system which can handle
up to k agents that do not comply, and still remain effective. We,
however, are not concerned with non-compliance, and assume that
agents cannot break the social law.

Agotnes and Woolridge [2] also described a setting where impos-
ing any social law incurs cost to the system designer, but also pro-
vides some benefit. In this context, the authors proceed to describe
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optimal social laws with respect to a given cost function. Thus, de-
signing a social law becomes an optimization problem. In this paper,
however, we reason about the properties of an externally given social
law, and do not attempt to minimize costs of any kind.

6.3 Control via LTL
Another related line of research is LTL synthesis, which is concerned
with verification and synthesis of robot control programs for tasks
such as safe navigating and grasping objects (e.g., [13]). In their
work, the authors try to specify the agent’s behavior in response to
an uncertain environment using different variations and fragments of
LTL formulae. These include regular LTL, GR1 fragment [3] and Co-
safe linear logic [14] among others. Specifications are given as LTL
formulae, and different control-generating algorithms are presented.
In the multi-agent setting, however, this approach seems to be less
applicable, as the execution model and goals are hard to compactly
describe as LTL formula. The hardness stems from the fact that we al-
low replanning under very specific conditions only. These conditions
include keeping track of replanning events, currently executing plan,
and so on. We conjecture that the size of the resulting LTL formula
needed to capture these conditions will be exponential, and hope to
prove this conjecture in a follow-up work.

7 Discussion and Conclusion
We have described an execution model which allows agents to adjust
their plans online via replanning. We then proposed and formally
described the notion of reactive robustness of a system under a social
law. We also described the problem of checking reactive robustness
property as a graph reachability problem. Finally, we have shown
how to verify robustness via a compilation to a state space search
problem, while keeping the state relatively compact. Finally we have
presented a proof-of-concept empirical evaluation, and have shown
that our procedure works on some benchmark problems.

In a recent work [18], authors propose a method to procedurally
synthesise subset of rationally robust social laws given a problem
description. We will proceed to tackle the challenge on generating
reactively robust social laws in the follow-up work.
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