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Abstract. The rapid deployment of digital systems into all aspects
of daily life requires embedding social constructs into the digital
world. Because of the complexity of these systems, there is a need for
technical support to understand their actions. Social concepts, such as
explainability, accountability, and responsibility rely on a notion of
actual causality. Encapsulated in the Halpern and Pearl’s (HP) defini-
tion, actual causality conveniently integrates into the socio-technical
world if operationalized in concrete applications. To the best of our
knowledge, theories of actual causality such as the HP definition are
either applied in correspondence with domain-specific concepts (e.g.,
a lineage of a database query) or demonstrated using straightforward
philosophical examples. On the other hand, there is a lack of explicit
automated actual causality theories and operationalizations for help-
ing understand the actions of systems. Therefore, this paper proposes
a unifying framework and an interactive platform (Actual Causality
Canvas) to address the problem of operationalizing actual causality
for different domains and purposes. We apply this framework in such
areas as aircraft accidents, unmanned aerial vehicles, and artificial
intelligence (AI) systems for purposes of forensic investigation, fault
diagnosis, and explainable AI. We show that with minimal effort,
using our general-purpose interactive platform, actual causality rea-
soning can be integrated into these domains.

1 Introduction
Causality has produced centuries of interdisciplinary theorization.
The first documented theories can be traced to ancient philosophers
such as Plato (Phaedo, 360 BC) and Aristotle (Posterior Analytics),
reaching to current theories by computer scientists such as Pearl [36]
and Halpern [12]. Focusing on a goal-driven categorization of causal-
ity, we distinguish two notions: type (general) causality and actual
(token) causality [13, 35]. Type causality is concerned with gen-
eral causal relations and aims to forecast the effect of a cause [29].
Reasoning with this notion aids in expanding predictive fields such
as medicine [22] and economics. In contrast, actual causality theo-
ries focus on explaining an observed event, that is, inferring causes
from effects [12]. Thus, such theories are useful in assigning blame,
explaining, or preventing similar events in the future. As such, ac-
tual causality directly benefits debugging software, hardware [6],
database queries [31], and system models [6, 3]. According to its ret-
rospective attribution, actual causality lies at the heart of explanation-
based social constructs such as accountability [8], responsibility [5],
and explainability [32].

Embedding such constructs into modern digital systems is indis-
pensable [21, 32, 9, 8]. For instance, since Cyber-Physical Systems

1 Technical University of Munich, Germany, email: lastname@in.tum.de

such as drones or airplanes may harm people when they “fail”, build-
ing such systems to be accountable is a necessity [18, 26, 20, 37].
Accountability in this context refers to developing a system’s (foren-
sic) capabilities in holding misbehaving parties responsible for vio-
lations. In the case of a drone crash, it is imperative to find and ad-
dress the root cause to prevent future mishaps; in aircraft accidents,
accountability is part of the judicial process to assign liability and re-
sponsibility. We call a system accountable if it can help answer ques-
tions regarding the actual cause of some (usually undesired) event.
The accountability of a system requires at least two properties: it
must provide evidence, usually in the form of logs, which helps un-
derstand the causes of the undesired event. Moreover, some mecha-
nism must be in place that can argue causality. Also, systems with AI
components (e.g., machine learning applications) constitute another
relevant application of explanation-based constructs. Since such sys-
tems are tasked with making daily decisions or predictions for hu-
mans, interest in explaining their results is growing [32, 33]. Similar
to accountability, explainability is inherently causal. Hence, this pa-
per aims to connect technical domains such as the abovementioned
with explanation-based social concepts via enabling automated ac-
tual causality reasoning.

As a technique of knowledge representation and reasoning, actual
causality is well formalized as a result of Halpern and Pearl’s (HP)
definition of actual causality [11], which is efficiently checked [19]
and thus suitable for the socio-technical world. However, to the best
of our knowledge, explicit actual causality theories and operational-
izations have not been utilized, in an automated fashion, to enable
socio-technical purposes such as accountability and explanation. Al-
though the HP definition describes a cause in a way that matches
human thinking, it was either applied in relation to domain-specific
technical artifacts (e.g., a lineage of a query [30], counter-example
of a model checker [28]) or demonstrated using simple philosophi-
cal examples [13]. In this paper, we aim to answer the question How
can actual causality theories be operationalized? This would entail
establishing a general framework and automating the parts that can
be automated. Actual causality reasoning, while used across differ-
ent disciplines, currently lacks a clear methodology and especially
tools to build, transfer, and reason over causal models. To this end,
we propose a unifying methodology to enable automated causality
reasoning and demonstrate its utilization for forensic investigation,
fault diagnosis, and explainable AI (xAI).

We argue that a semi-automated framework of actual causality
serves as a starting point to achieve the ambitious goal of enabling
complex interdisciplinary concepts such as accountability. Especially
for operationalization, a unifying framework diminishes the barrier
to embedding causality reasoning in new domains because it al-
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lows reuse. As we shall see in this paper, the framework consists of
tasks that interweave social and technical boundaries. Some of these
tasks reuse domain-specific methodologies and knowledge sources.
Also, the framework automates solely technical tasks so that they
are reused among different domains. Consequently, attention shifts
to how such technical tasks serve goals, such as enabling account-
ability. To this end, this paper contributes the following a) a gener-
alized unifying framework to operationalize causal reasoning; b) a
general-purpose, open-source, interactive platform called the Actual
Causality Canvas (short: the Canvas) 2, which automates parts of the
actual causality framework; and c) three use cases that instantiate the
framework for accountability, fault diagnosis, and xAI purposes.

2 Preliminaries
The HP definition of (actual) causality is a widely cited approach
based on counterfactual reasoning and models of structural equa-
tions [35, 11]. The counterfactual view of causality was proposed by
Hume (1748) [16]. This view can be understood by a basic example:
If B would not have happened, had A not occurred, then we call A a
cause for B. Obviously, reasoning about causality in this straightfor-
ward way is not always sufficient. Therefore, HP tried to formalize
this concept and provide a theoretical notion of causality.

HP provides a method to causally reason over knowledge repre-
sented in a causal model. This model uses variables that can take
on different values to describe the world. The way some of these
variables causally influence each other, that is, affect their values, is
defined by so-called structural equations [35]. The variables are split
into exogenous and endogenous ones. Exogenous variables, governed
by factors external to the model, represent the environment, and
hence, they cannot be part of a cause. Meanwhile, endogenous vari-
ables represent the factors we consider as possible causes; their val-
ues are determined by the structural equations of other endogenous
and exogenous variables. To keep the paper accessible to a broader
audience, we present an informal definition of a binary causal model.
In this study, we limit our focus only on acyclic models representing
binary variables.

Definition 1 Binary Causal Model [11]
A binary causal model M is a tuple M = (U ,V,F), where
- U ,V are sets of exogenous and endogenous binary variables,
- F associates with each variable X ∈ V a function FX that deter-
mines the binary value of X given the values of all other variables.

The values of the exogenous variables in U are defined by a con-
text ~u, which is an assignment of values based on a particular event.
Given a causal model and a context (M,~u), HP defines an actual
cause (a set of events and their values denoted as ~X = ~x) of an event
(or a combination of such) ϕ using three conditions. We show the
informal interpretation of these conditions in Definition 2.

Definition 2 (Actual Cause (Informal)). ~X = ~x is an actual cause
of ϕ in (M,~u) if the following three conditions hold:
AC1. Both ~X = ~x and ϕ need actually to happen.
AC2. Changing the original values of ~X to a different setting ~x′ while
“fixing” some of the remaining variables at their original value (in
a contingency set ~W ), ϕ must not occur anymore.
AC3. ~X is minimal; no subset of ~X satisfies AC1 and AC2.

With AC1, it is ensured that the events ~X = ~x are only considered as
a cause of ϕ if both occurred. Because it is convenient and common

2 https://github.com/tum-i22/causal-canvas

to sort out irrelevant causes, AC3 is a minimality condition. The core
of Definition 2 lies in AC2, which resembles counterfactual reason-
ing; it holds if there exists a setting ~x′ of the variables in ~X different
from the original setting ~x and another set of variables ~W , which
we use to keep variables at their original value (when the effect hap-
pened), such that ϕ does not occur anymore. This matches the coun-
terfactual definition of causality: if ~X = ~x does not happen anymore,
i.e., variables ~X take on different values ~x′, and thus ϕ does not oc-
cur anymore as well, we can call ~X = ~x a cause (provided that AC1
and AC3 also hold). The role of the contingency set ~W becomes
more clear when considering the following example (Lewis [29]):
“Suzy and Billy both throw a rock on a bottle which shatters if one
of them hits. We know that Suzy’s rock hits the bottle slightly earlier
than Billy’s and both are accurate throwers.” Halpern models this
example with these variables (excluding exogenous variables): ST
for “Suzy throws,” with values 1 (she throws) and 0 (she does not
throw); BT for “Billy throws,” with values 1/0 (he throws/ he does
not throw); BH for “Billy’s rock hits the (intact) bottle,” with values
1/0 (it does/does not); SH for “Suzy’s rock hits,” with values 0 and
1; and BS for “bottle shatters,” with values 1/0 (it does/does not).
The equations are as follows:
- BS is 1 iff one of SH and BH is 1, i.e., BS = SH ∨BH ,
- SH is 1 iff ST is 1, i.e., SH = ST ,
- BH = 1 iff BT = 1 and SH = 0, i.e., BH = BT ∧ ¬SH .

Figure 1 visualizes how the variables influence each other as de-
fined by the equations, which is referred to as a causal graph or a
causal network. Each node A represents an endogenous variable; an
edge from A to B means that B “depends” on A.

BT

ST

BH

SH

BS

Figure 1. Rock-throwing Example (Source: [13])

Assuming a context ~u that sets ST = 1 and BT = 1, we have
SH = 1, BH = 0, and BS = 1 as the actual evaluation of the
model. Let us consider the following causal queries: Are ST = 1,
BT = 1, or both a cause for BS = 1? We begin by checking
whether ST = 1 is a cause. AC1 is fulfilled, as both ST = 1 and
BS = 1 actually happened. Since ST can take only two different
values, the only possibility for a setting ~x′ for ST is 0, i.e., Suzy does
not throw. A trial with ~W = ∅ (an empty contingency set) shows that
AC2 does not hold: if ST = 0, then SH = 0 such that BH changes
to 1, as we did not change BT , and ultimately, BS is still 1. How-
ever, the HP definition allows us to define ~W = {BH}. Now AC2
holds because BS = 0, and so does AC3, as our cause consists of a
single event. This example challenges causality definitions because
it shows a case of preemption –a confusing situation where multiple
possible causes can coincide. HP deals with such cases with the idea
of a contingency set. Now, let us consider BT = 1 as a cause for
BS = 1; we can immediately see that AC1 is fulfilled as well. Sim-
ilar with ST , the only possible setting ~x′ for BT is 0. However, this
does not affect BS, and it is also not possible to find a ~W such that
AC2 holds; that is, BT = 1 is not a cause. Also, ST = 1∧BT = 1,
i.e., the conjunction of both, is not a cause since it would not fulfill
AC3: there is a subset, namely ST = 1, which is a cause by itself.

Responsibility is an extension of the definition by Chockler et
al. [5]. It quantifies the concept as a metric to allow for a compar-
ison of causes in the form of a degree of responsibility.
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Figure 2. A Process View of the Framework

3 A Framework of Actual Causality

Having looked at the theoretical foundation of actual causality, in this
section, we consider the technical and methodological aspects of the
theory. Later, we see how the Canvas automates each aspect.

3.1 Conceptual Tasks

We identified the three main decoupled activities of actual causality:
modeling, context setting, and reasoning. Figure 2 shows a process
perspective of operationalizing these components. The solid arrows
(1 and 2) are inherited from the theories themselves, i.e., we need a
model and a context to reason about a cause. However, we also argue
that interconnecting these components (dashed arrows 3, 4, and 5)
may address some of their challenges. In the following, we focus
on the key tasks and questions of each phase; this also serves as a
requirement elicitation step for the Canvas.

Causal modeling makes our understanding of causal factors ex-
plicit. Most probably, as with any modeling process, the resulting
model is incomplete, meaning “there is no right model” [12]. Halpern
and Pearl themselves have shown several times the difficulties of
coming up with a proper model and its considerable influence on
the result of cause evaluation [14]. However, a causal model is noth-
ing but the modeler’s assumption of how factors relate and influence
each other, thus necessitating the ability to edit the models incre-
mentally. As such, we designed the Canvas as an interactive learning
system where a modeler refines their causal model (according to Def-
inition 1), hence dashed arrow 3 in Figure 2.

Since causal models are flexible (from the rock-throwing exam-
ple [29] to the model checker’s results [28]) and intuitive, many ap-
proaches exist for model discovery. Model discovery refers to the
act of creating causal models from some source of knowledge. Un-
derstandably, model discovery by transformation is domain-specific.
In a specific area, we need to identify existing models matching
the properties of a causal one. For this paper, such models have to
be acyclic, causal, and expressed in propositional logic. Optionally,
they may also be probabilistic and Boolean. Then, a formal model
transformation function can be plugged into the process to create the
causal model. For instance, the domain of system security has about
30 different graphical threat models [24], many of which already ex-
press (type) cause-effect relations and can also be used to infer actual
causality. Among the best-known threat models are attack trees [41]
and attack graphs [42]. Usually, attack trees are constructed by secu-
rity experts to assess the risk on a system. The ability to automati-
cally generate attack graphs from other sources even eliminates the
manual process [42, 17]. For accountability purposes, we can re-use
such knowledge to reason about attacks that have already occurred.
The same applies to hazard models such as fault trees and their au-
tomated generation [45]. In Section 4, we will see more sources of
causal models facilitated by how the Canvas supports their transfor-
mation (details in Section 3.2).

Regardless of whether the model is created manually, transformed
from other sources, or automatically generated, we emphasize that it
should be augmented with preemption relations. As we have seen in
Section 2, preemption should be expressed in the model when pos-
sible (the connection between Suzy’s and Billy’s hits). This reflects
a discrepancy among coinciding disjunctive events in confusing sit-
uations. Preemption relations can stem from different requirements
or facts. They can reflect a temporal order of events as was the case
in the rock-throwing example; they can be functional; for instance, a
command by a drone remote-controller takes priority over an auto-
pilot command; they can also be contractual; for example, a sensor
manufacturer is obliged to notify a drone admin about a patched soft-
ware library. These relations are crucial to conclude a cause in some
cases. However, we think that they have not been sufficiently high-
lighted in the literature. Hence, we believe they should be noted ex-
plicitly as part of our approach. Semantically, preemption relations
are expressed with a negation dependency from the preempting (P )
factor to the “less affecting” factor (Q), i.e., Q := . . . ∧ ¬P .

To conclude, the questions to be answered as part of this task in a
particular domain are the following: Q1: Which transferable sources
(models or data) of causal knowledge exist? Q2: What is the formal
mapping between the source and destination syntax and semantics?
Q3: How can preemption relations be identified and expressed?

Context setting is the act of describing an event’s circumstances
as an assignment of values to exogenous variables. For example,
based on the black-box recordings of aircraft that collided near Ue-
berlingen [43], the investigators knew that the ground air traffic con-
troller (ATC) had alerted the first aircraft’s crew of traffic but on
a wrong direction. In the accident’s causal model, such informa-
tion would set the value of a variable like Air traffic control cor-
rectly alerts crew to false. In a digital forensic investigation of cyber-
attacks, experts try to retrieve trustworthy log files from different sys-
tems to set the context. The logged events aid in understanding the
occurrences. For example, a log statement like ..”MACHINE-ID” :
”8a7”,”CMDLINE” : ”gdb –nx –batch -ex attach..” is interpreted as
an admin with a specific ID has attached a debugger to a running pro-
cess; this sets the model variable admin attached debugger to true.
These examples are meant to show that context setting varies among
domains; however, there are established methods to help in this task.
With diverse sources, from recordings, eyewitness reports, to logs,
we see two primary methodological approaches to context setting.

The first approach is considered in scenarios where a line of “trust”
exists between an agent, such as a system-admin, and a system like
a company, or a citizen and traffic police. In such situations, we have
an intuition about typical misbehavior; for example, an admin leaks
sensitive data, or a driver goes over the speed limit. Our knowledge
of such patterns can be presented as causal models that guide our
monitoring effort (hence dashed arrow 5 in Figure 2). In such cases,
an approach like this (have a model, monitor it) can be deterrent. Fur-
thermore, this way, we address the principal challenge of logging and
auditing capabilities, i.e., the granularity of logging or monitoring.

Things are not that simple, however. It is not safe to assume that
we always have an intuition about the typical pattern of unwanted be-
havior (“unknown unknowns”). In the second approach, systematic
processes normally start by analyzing sources of truth and narrow-
ing the events. Then, they structure the information so that it can be
transformed into a causal model that embeds the context, hence arrow
4 in Figure 2. An example of this method is why-because-analysis
(WBA) [25, 26]. This approach does not address the granularity of
monitoring since it only deals with after-the-fact sources.

The two approaches are not mutually exclusive; we can leverage
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both for the same system. For example, known typical malicious in-
sider (security) attacks can be monitored, and unknown external at-
tacks are investigated. As we will see in the case of xAI, context
setting can be neither and is as simple as field assignment.

Causal reasoning includes both checking and inference. Causal
checking involves verifying if a hypothesized cause is an actual cause
of an effect. Inference, on the other hand, means finding a cause
with no hypothesis. Both notions must be available as part of actual
causality operations. Checking is already beyond NP [1], and intu-
itively, the inference is at least as hard. The complexity results have
limited the application of the actual causality theory; however, be-
cause of our recent open-source approach, efficient methods to check
and infer causality are available [19].

Causal reasoning is mainly motivated by a goal of liability attribu-
tion [15], future prevention [40], or explanation [32]. Regardless of
the target, causal reasoning answers a causal query, which consists
of a context, a hypothesized cause (in the case of checking), and an
effect. Since causal reasoning is automated in the Canvas, the crucial
question is What is the query for each goal?

For liability attribution purposes, we are interested in hypothesized
causes that include humans. For example, is admin “Bob” the cause
of stealing the document? For such purposes, we focus on the re-
sponsibility (Section 2) of the cause in the case of multiple causes.
Additionally, we tend to consider negligence or failure to do an ex-
pected job as a potential cause in such situations. For example, s the
ATC’s failure to use a cell phone the cause of the collision?

Future prevention requires identifying all sufficient causes regard-
less of actuality or minimality [29, 26] and putting countermeasures
in place. To this end, a causal query would collect all causes by trying
different hypotheses regardless of their responsibility.

According to a recent survey by Miller [32], humans seek con-
trastive explanations. In other words, people would not phrase their
causal queries as Why did event P happen? but rather as Why did
P happen instead of Q? [32]. Miller also concludes that explana-
tions are selected and social. We think a contrastive query can be
constructed by phrasing the effect ϕ in a way that expresses this dis-
tinction. For example, ϕ will be a formula like ¬Q.

To conclude, query formulation is a crucial part of this phase. We
use the same language to formalize a causal query for different pur-
poses. However, we adapt to the goal and include responsibility, col-
lect all causes, or phrase the effect in contrast to reality.

3.2 The Actual Causality Canvas

Recall that we are interested in solving problems fixated around
causality, such as finding out why a drone crashed or explaining
a classifier result. Instantiating the three activities—model, context,
and reasoning— we can solve such problems. We have seen that each
phase has its own challenges and methodological decisions. How-
ever, we believe that a unified platform that enables each phase is cru-
cial for deploying more causality socio-technical applications. Such
a platform must be general enough to accommodate different prac-
tices, models, and queries. As such, we present the Actual Causality
Canvas, an extensible, open-source, interactive tool that automates
the abovementioned tasks and activities. It is in part a modeling tool
that supports typical modeling activities and provides methods to
transfer domain-specific models to causal ones. Also, the Canvas al-
lows an analyst to perform interactive causal analysis of a particular
event. Obviously, graphical editors are common in many domains;
however, the Canvas’s contribution lies in encapsulating the crucial
tasks needed to specifically answer humanlike causal queries. Fig-
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Figure 3. The Components of the Actual Causality Canvas

ure 3 shows the main components of the Canvas; the right-hand side
shows the standard features for the three steps.

The generality of the modeling mode in the Canvas stems from
building it on the basis of Definition 1 (extension .causalmodel). We
used a machine- and human-readable format (JSON) for this pur-
pose; the newly created causal models are written and saved using
this format. The Canvas already transforms sources such as an at-
tack tree modeled using ADT tool [23], or a fault tree modeled us-
ing EMFTA tool [7], or any graph formatted using DOT. Intuitively,
the Canvas can also read already transformed or created causal mod-
els. The import functionality is implemented using a plugin-based
architecture, keeping the door open for an easy extension to include
new sources of knowledge. Alternatively, wrappers can be written to
generate a (.causalmodel) file directly from other sources. Besides
model transformation, the Canvas renders the models using different
layout algorithms like d3 and dagre. A set of visual and textual tools
to create nodes, edges, and formulas from scratch are implemented.
Furthermore, since human readability is a crucial aspect, the Canvas
is equipped with features that enable the user to grasp larger models
by focusing on parts of the graph.

Context setting is enabled with a specific field in the
(.causalmodel) format. Programmatically, the context can then be set
by writing the values into the respective field in the file. Alternatively,
the Canvas provides a command input function that allows the user
to set the values of the exogenous variables (context). This is imple-
mented using a practical filter-and-set functionality that uses regular
expressions to select the variables.

For the reasoning mode (Figure 4), the Canvas is equipped with a
solving back-end based on the tool provided in [19]. This tool offers
different solvers for actual causality that differ in technology (SAT
or Brute-force) and accounting for responsibility with a minimal ~W
and either check or infer causality. The back-end is embedded with
the Canvas bundle, and it promptly answers queries (less than 6 s for
models of 8000 nodes). The reasoning mode is activated using a spe-
cific button that displays a special screen for the query construction.
The different elements of the query (context, cause, and effect) are
easily manipulated in this screen. Once a query is ready, a request
to the solver is sent, and the result is then shown back to the user.
The result details whether each Definition 2 condition passed or not,
along with a ~W . To realize the requirement of interactivity, the Can-
vas tracks all causal queries in the same session; the user can navigate
back and forth within them. This way, a user can adapt their queries
and play with different assumptions, contexts, and effects.
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Figure 4. The Reasoning Mode in the Canvas:

1- Context, 2- Hypothesized Cause, 3- Effect Formula, 4- Solving
Strategy, 5- Query Request, 6- Query Result, and 7- Model

4 Use Cases
In this section, we show how the framework to operationalize ac-
tual causality is instantiated in xAI, accident investigation, and drone
crash diagnosis. For each use case, we detail the modeling process,
the context setting, and the reasoning aspect.

4.1 Explainable AI
Explanation and interpretability in AI (xAI) and machine learn-
ing systems are attracting attention because they are necessary for
regulation compliance, system improvements, and trust enhance-
ment [33]. The work in xAI mainly focused on model-based ap-
proaches that approximate the true criteria of classifiers as gradient-
based (binarized like in [38]) or decision tree-based models [33]. Re-
cent articles by Miller [32] and Mittelstadt et al. [33] suggest that
existing approaches have not yet been built on relevant definitions
from philosophy, social science, and cognitive science. Instead, they
provide “general scientific explanations” The authors argue that hu-
mans would seek an “everyday contrastive, social explanation” that
explains ”why particular facts occurre” [32, 33]. Following Miller,
we see HP as an enabler of such explanations. We understand that
there is more to xAI than what we are suggesting here; however, we
only show how explicit representations from the literature (like the
one in our example) can be incorporated into the Canvas, knowing
that this is incomplete. We discuss the three requirements: a rep-
resentation of the classifier’s behavior, i.e., a causal model; the ex-
act information about the classified point, i.e., the context; and the
reasoning machinery. We show one simple transformation to causal
models and straightforward query construction.

Causal model. To illustrate this approach, we use an example pro-
vided by Miller [32] and highlighted again in [33]. The example (dis-
played in Table 1) considers the features and parameters learned by
an algorithm to classify types of arthropods. Some features express
binary facts such as whether an arthropod has a stinger or not while
others are integer-based, e.g., the number of legs. Since we only con-
sider binary models, we use a binary representation of the integer
values. Although there may be other elegant ways to handle decimal
features, we believe that a binary model captures what we want to
explain. For instance, the fact that an arthropod has eight legs makes
the algorithm classify it as a spider; the number eight is not needed
in an arithmetic way.

Depending on the algorithm, different representations of the
learned models exist. We use the one presented in the example: a tab-

Table 1. A Lay Model for Classifying Arthropods[32]

Type No. Legs Stinger No.Eyes Compound Eyes Wings

Spider 8 7 8 7 0
Beetle 6 7 2 3 2
Bee 6 3 5 3 4
Fly 6 7 5 3 4

ular set of features and the values corresponding to one class. Each
class and each binary feature is presented by an endogenous variable.
To accommodate for its values, a nonbinary feature variable is pre-
sented by a set of bits. For example, the “number of wings” (N.W )
feature has the values 0, 2, or 4, and then it will be represented with
two bit-variables, N.W1, N.W0. The different values of the two bits
correspond to an index of the real values, i.e., 00 means 0, 01 means
2, and 10 means 4. We are not transforming the decimal values in the
table into their binary representation but rather assigning them a bi-
nary value of some number of bits. The number depends on the count
of distinct values presented. In the example, N.W has three values,
and hence, we use two bits. This way, we use fewer variables. We
also express each feature (or feature bit) with an exogenous variable.

In addition to the variables, we create the propositional equa-
tions from the table. For instance, a spider is an arthropod with 8
legs, and not a stinger, 8 eyes, no compound eyes, and no wings.
Then, each class variable is a conjunction of the features’ value, e.g.,
spider = (no.wings = 0)∧(!stinger). Note that (no.wings = 0)
is presented as explained above. As such, we create a causal structure
(shown in Figure 5) of the factors leading to classifying an arthropod.
Lastly, although not part of the example, the variance of the features’
importance (e.g., weights) is a candidate for a preemption relation.

Context setting and causal reasoning. We can now provide ex-
planations about specific classifications. The specific case (e.g., an
image J of an arthropod) is seen as a vector of features. This is pre-
cisely the context of a causal query. Formally, the context is an as-
signment of exogenous variables; we can easily see that it maps to the
values of the features we consider. For example, image J contains 8
legs, no stinger, 8 eyes, no compound eyes, and no wings. What re-
mains is the phrasing of the causal query. Miller [32] argues that
the human perception of an explanation often refers to a contrastive
question, i.e., why P rather than Q. We think such a question can be
formulated by focusing on what is the effect ϕ. The most basic con-
trastive question can then be seen as (¬Q). The result of the causal
query can then be considered a contrastive explanation. For exam-
ple, the answer to the question Why is image J labeled as a spider
instead of a beetle? [32] is the list of causes (as seen in Figure 5): the
compound eyes, N.W , number of eyes, and number of legs. Obvi-
ously, the decision-tree nature of the example simplifies it; however,
we stress that our goal is to show the ability to incorporate ideas
from the literature of approximating classifier behaviors into simpler
models and augment it with contrastive reasoning capabilities.

Figure 5. The Causal Graph of the Example
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4.2 Aircraft Accident Investigation

On July 1, 2002, two aircraft (Tupolev Tu154M and a Boeing 757-
200) collided in mid-air in southern Germany (Ueberlingen), killing
all the people on board [34]. An investigation by the German Federal
Bureau of Aircraft Accident Investigation (BFU) and a WBA by a
research group documented the many interweaving factors surround-
ing the accident [34, 43, 40]. Briefly, a series of coinciding events led
to the collision, including an exceptional heavy load on the ground
ATC, conflicting advisory commands of the ATC and the collision
avoidance systems (TCAS) to the Tu154M crew, system degradation
of the short term collision avoidance (STCA), and communication
issues due to a maintenance operations at the ATC office.

Causal model and context setting. The WBA is a formal pro-
cedure introduced by Ladkin to investigate accidents and propose
countermeasures for future prevention [25, 26, 40]. The result of a
WBA is a graph called the why-because-graph (WBG), which struc-
tures causal factors (nodes) and their relations (edges) via analysis
of official reports. The Ueberlingen WBG contained 95 factors (seen
in [44]). With some adaptations, we use WBG as a source for causal
models. We transform a node into the WBG to an endogenous vari-
able in the causal model. Leaf nodes are considered as an exoge-
nous variable and are always true because the WBA creates them
from reports (actually happened). Lastly, we create the equations for
each variable by manual inspection: was is it conjunction or disjunc-
tion of variables that led to it? During this step, we also considered
preemption relations, especially when events coincide. For example,
two systems are implemented to avoid midair collisions—ATC aided
with STCA, and additionally, the aircraft’s TCAS. Accordingly, the
TCAS is the last resort that should resolve last-minute issues [34].
Thus, a failure by the ATC preempts a failure by the TCAS. Another
example of preemption relations was added among the factors that
led to the late ATC intervention (denoted as e49 in [44]). There were
five coinciding factors, two of them were e56 Heavy load on the ATC
and e62 Crossing routes. Arguably, people tend to consider excep-
tional events as probable causes and not as regular events [12]. Thus,
we argue that the exceptional heavy load on the ATC (because of a
late landing on a nearby airport and a faulty phone system) preempts
other factors such as e62. According to this argumentation, we added
preemption relations among these events.

Causal reasoning. Since WBA aims to produce a list of counter-
measures, we simulated our first check to automate the manual WBA
sufficiency test [26], which checks if the effect eventually happens
given the occurrence of all the root causes. Specifically, we checked
Q1 : Is ~X a cause of the collision? where ~X is the set of 31 leaf
events, which passed with an empty ~W . Next, we looked for a min-
imal cause of the accident. Interactively, we found a minimal cause
of 14 variables, which were mainly the events resulting in the ATC
intervention delay. This cause conforms with the immediate cause
reported by the BFU [34]. We formalized causal queries on a more
abstract level of details and found minimal causes on a coarser level
than the 14 events. Although knowledge around this accident already
existed, the advantage of the canvas is that it automates the inter-
active analysis to investigate complex situations with large causal
graphs. We saw how accountability is enabled by domain-specific
methodologies such as WBA.

4.3 Drone Crash Diagnosis

Drones, such as quadcopters, recently found widespread use; how-
ever, their safety is a significant concern. In the case of drone failure,

it is essential to identify the cause and prevent it in the future. In this
use case, we consider a realistic example where the Canvas is used
to model a system from scratch and assist in investigating incidents.

Drones have several physical and software components, includ-
ing actuators, sensors, and controllers. The components that interact
with the physical world are called actuators, e.g., the electrical en-
gine. Sensors are devices that measure physical properties; for exam-
ple, GPS measures the location and altitude. Finally, software com-
ponents are virtual units that organize all hardware components and
process the information to keep the drone stable in flight. For ex-
ample, the sensor fusion module receives readings from sensors and
estimates an approximate value based on the readings. The course of
a flight comprises several coinciding events related to different com-
ponents. The diversity of such events and their causal connection ren-
der the diagnosis difficult. As we see in this use case, the Canvas is
a practical method, especially when investigation from scratch.

Causal model. Each node in our model describes an action of a
specific component, such as the failure of the GPS sensor or when
the drone was being pushed by the wind. The model is built based
on domain knowledge or data-driven approaches. In previous work,
we deduced a fault tree from the drone’s architecture [45]. Here, we
use a similar fault tree while adding preemption relations based on
the results from a practical course we held with computer science
students [46]. The students used the Canvas to create their causal
models. The preemption rules originate from the nature of the control
loop that is being executed repeatedly during flight. In this sense,
the failure of the actuators preempts that of the controller software,
which then preempts the failure of the sensors. Moreover, among the
software components, path tracking failure preempts path planning
failure. After adding these relations to the fault tree (imported to the
Canvas), we obtain our model.

Context setting and reasoning. All the nodes in our causal model
are events. Simply put, an event describes an action performed by a
specific component. For example, the number of detected satellites
by the GPS sensor dropping below 9 is an indication of a gpsFailed
event. For context setting, first, detection analysis should be run over
the data to detect the events that occurred. If an exogenous event is
found in the flight logs, its value is set to true in the Canvas. The en-
dogenous variables, such as sensorsfailed or actuatorsfailed, will be
computed based on their respective equations implied by fault tree
semantics. We consider two scenarios based on real flight logs col-
lected from users of an open-source quadcopter [10].

In the first scenario, we analyze a case of engine failure that re-
sulted in a crash. Engines have an essential role in keeping the drone
in the air, and their failure leads to altitude loss. If the commanded
signal to an engine is set to the maximum value for more than a
second, then one can assume that the engine has failed. We set en-
gine1Failed to true on the basis of our assumption. Moreover, alti-
tudeLoss can be detected when the altitude drop rate is more intense
than a threshold. This is seen in the mentioned flight log. Other nodes
such as accelerometerFailed or windPushed are set to false either be-
cause they did not occur in that specific log, or there were no relevant
sensors to record them. Now, constructing a query with a hypothe-
sized cause engine1failed for altitudeLoss returns true. Other hypoth-
esized causes, such as gpsFailed, result in a negative response in the
Canvas. In a second scenario, which was also seen in the real flight
logs, both the path tracking and path planning modules of a drone
failed. Our objective was to query which one was the actual cause.
We set the value of these two events to true. Also, the value of alti-
tudeLoss is set to true since this event occurred according to the log.
Although it is not trivial that pathTrackingFailed is the actual cause,
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one can easily deduce this using the Canvas. This is because of the
preemption relation between the pathPlanningFailed and pathTrack-
ingFailed nodes. This preemption rule originates from the domain
knowledge where path tracking is closer to the final physical output
of the drone than the path planning module in the control loop.

Although the logs are not labeled, i.e., the causes are not known
to us, the added value of the Canvas lies in its ability to import fault
trees and compute the causality in large models where it is nonintu-
itive for the investigator to deduce causality between events.

5 Evaluation
In addition to utilizing the framework and Canvas in different use
cases, we briefly report our evaluation of the Canvas.

Display performance. We tested how the Canvas performs when
displaying different, randomly generated models. The models vary
in size between 10 and 4000 nodes. We tested critical functions
such as the graph layout, graph navigation, and zooming. All tests
were executed on an Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz,
2001Mhz, 4-core(s) Processor, and 16GB RAM. The Canvas uses
two algorithms to lay out the imported graphs, dagre, and d3 −
force. For the quality of rendering, the dagre layout is suitable
for smaller causal models (fewer than 50 nodes). The nodes here
are nicely separated with sufficient space. The d3− force layout is
suitable for almost any model size up to 600 nodes. For the render-
ing time, the layout methods differ as well. Dagre is usable only for
models smaller than 400 nodes, whereas d3−force responds within
a reasonable time with models up to 4000 nodes (taking around 8 s to
render). The Canvas automatically switches its layout method on the
basis of the model size. The other features perform well with causal
models up to around 800 nodes, after which some lag is seen with
zooming and navigation. As human cognition is limited, operators
will not grasp large models. Thus, we verified that the Canvas facil-
itates focusing on parts for models up to 4000 nodes. We manually
tested inspecting such models by highlighting and zooming into their
parts. This is an effective feature where the user highlights a reach-
able part of the graph based on a filtering function. Of course, we do
not see a point of using a graphical editor with very large models, but
the goal is to document the performance of the Canvas.

Usability. We also conducted a preliminary user study with 10
computer science graduate students (working in five groups). As part
of a practical course, they used the Canvas to develop their custom
causal models and queried the actual causes based on real drone crash
data [46]. An overview of the HP definition, illustrated by examples
bundled in the Canvas, was sufficient for the students to grasp the
concept of causality and use it in their drone crash scenarios. We col-
lected the students’ feedback through written forms and face-to-face
interviews. The five groups reported an effective usage of the Canvas
for the task. Some of their feedback included “powerful utility that
is easy to operate” and “a great tool to quickly analyze if the pro-
posed model is indeed correct.” They stressed its power, especially
when dealing with large models or confusing situations. The students
also suggested some enhancements that we are considering such as
an undo feature, a custom highlight of preemption relations, and a
programmable interface that exposes all phases to other systems.

6 Related Work
Previous versions of the HP definition are applied as a supplement
to other technologies. So far, these applications, to our knowledge,
adapted the theory to a domain-specific context, with simplifications

and restrictions on the definition. This is clearly sufficient for the par-
ticular use case, but we argue that a general approach toward actual
causality may enable new socio-technical applications; such an ap-
proach is lacking in the literature. Examples of using HP are seen in
the domain of databases [30, 4, 39], where causality is used to explain
a query by enhancing the provenance information. Database work
uses domain-specific concepts such as lineage and database repairs;
it also limits the theory to a single-equation model [30] and a no-
equation model in [4, 39]. To verify models, the authors in [2, 27, 3]
blinded the theory with model checking and enhanced a counterex-
ample with causal reasoning. The relaxation of the theory is based
on the fact that no equations are required. In [2, 27], the authors fo-
cused on the efficiency of causal reasoning as part of bounded model
checking. In contrast with our approach, these applications cannot
be used outside their domains because of restrictions (e.g., single-
equation) or dependency on other concepts (e.g., counter-examples).
Also, they only deal with a specific part of the theory, i.e., reasoning.

In the domain of accident (aircraft and railways) investigation,
WBA tools and methodologies are relevant to our work [25, 26, 40].
The WBA Software Toolkit provides functionalities that support an
incident investigation, especially in modeling and structuring the oc-
curred factors. Our approach, on the other hand, differentiates model-
ing and context since it is plausible to use models of recurring behav-
ior among incidents. Also, since WBA aims to list all the sufficient
causal factors of an accident, the toolkit does not provide an actual
causality reasoning function.

Similarly, threat and hazard modeling tools, such as ADT for at-
tack trees [23] and EMFTA for fault trees [7], present the user a
model editor and analysis tools. However, explicit context setting and
actual causality reasoning are not part of the editors. Also, the ability
to import other knowledge sources and transform them into causal
models is not supported in all these tools.

A significant body of work is published around xAI; for an
overview of post-hoc human explanations, see [33, 32]. In our use
case, we did not propose a complete solution like the local expla-
nation in [38]. However, our goal was to emphasize the connection
between our approach and xAI. Still, significant work is needed in
the domain of modeling for xAI, possibly using our framework.

7 Conclusions and Future Work

This paper provides a unifying framework that generalizes exist-
ing approaches to accountability and explainability, which applies
to different contexts. As modern systems could harm people, dam-
age their assets, or decide their loan adequacy, such systems ought
to be at least explainable. To that end, our framework is intended
to solve explanation-based problems for a wide range of systems in
the future. Advancing operationalizations, the framework is bundled
as an interactive platform. We have shown how different knowledge
sources can be transformed into structural-equations models and then
used for an automated analysis—using HP actual causality. We con-
clude that our framework is generalizable enough to accommodate
explanation-based socio-technical constructs, and with tool support,
it is amenable to be incorporated into different domains.

Conceptually, our future work lies in expanding our approach with
additional general components, such as probabilities, and studying
its corresponding domain-specific notions. We also aspire to develop
our list of use cases with new real-world applications.
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