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Deep learning applied to NILM: is data augmentation
worth for energy disaggregation?
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Abstract. Energy disaggregation (or Non-Intrusive Load Monitor-
ing - NILM) is the task of estimating the electricity consumption of
each appliance in a household from the total electricity consump-
tion. Disaggregated consumption gives information on each appli-
ance and helps to find ways to reduce a household’s energy consump-
tion. Recent progress in deep neural networks for computer vision
and natural language processing gives inspiration to train general ar-
chitectures on time series data in order to improve the state of the
art on NILM, but lack of supervised data is one of the main prob-
lems stalling the improvement of disaggregation algorithms. In this
paper, we introduce a new multi-agent based simulator that enables
to generate synthetic data according to real time-use surveys. This
synthetic dataset is used as a training set in the NILM learning pro-
cess: we show that this data augmentation improves the accuracy of
the disaggregation. In addition, we present four neural network archi-
tectures to estimate appliances consumption and establish a baseline
architecture on the data coming from the synthetic generator.

1 INTRODUCTION

Non-Intrusive Load Monitoring (NILM) or energy disaggregation is
the process of estimating the consumption of each individual appli-
ance from the global consumption of a household. The widespread
installation of smart meters in individual houses gives an opportunity
for using such a technique to help users monitor and reduce their en-
ergy consumption. The first application is to inform the occupant of
the amount of energy each appliance consumes. A second applica-
tion is to provide a personalized feedback in case of an appliance’s
malfunction or inefficiency to prevent breakdowns. Finally, we can
warn the household’s occupant of the potential savings of differing
appliance use to a time of the day when electricity is cheaper or has
a lower carbon footprint. The last application can be associated with
solar panel system, in order to maximize the rate of self consumption
electricity.

The NILM problem, which was formalized in the mid-1980s
by George Hart [5], was focused on extracting transitions between
steady-states. Many NILM algorithms on low frequency data (1 Hz
of lower) followed Hart’s lead and extracted only a small number of
expert features, followed by a classifier like support vector machine
(SVM) or K-Nearest-Neighbour(KNN). These handcrafted feature
extractors are not used anymore since deep neural networks can au-
tomatically learn to extract a hierarchy of features in various objects
like raw images [17], texts [6] or time series. Deep learning for NILM
was introduced in 2015 by Jack Kelly [9] with major progress on
state of the art models, and made a major breakthrough against old
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methodology, using three different architectures for time series clas-
sification or regression.

The difficulty of NILM lies in the fact that several appliances,
which are not always present in the house, can be used and this forces
us to train several models to make multi-output prediction. Many
NILM algorithms have been designed for high frequency data (sam-
pling at kHz or even MHz) to low frequency data (1Hz- or slower)
like the REDD, blueED or UK Dale dataset [10] [8] sampled from 1
to 6 seconds. These public datasets contain both aggregate and sub-
metered energy data for each monitored house, but are not easily
transferable to another sampling rate or country with another energy
consumption behaviour. For example, almost all datasets will not be
reusable with the expected integration of electrical vehicles around
the world and new behaviour with self electricity generation. In our
experimentation, faced to the lack of 2 second data samples, which
will be the new standard for downstream smart metering in France,
we introduce a Multi-Agent based Simulator (MAS), SMACH [15],
which uses real appliances signatures to generate a synthetic dataset
that follows the distribution of real data. This data augmentation trick
allows us to train networks that generalize over the real datasets and
unseen houses. French data is particularly complex due to the variety
of heating appliances, this makes disaggregation an even harder chal-
lenge. The MAS is flexible enough to generalize over other countries
or behaviour not seen yet, and avoids data collection campaigns to
integrate significant changes in behaviour.

Since neural networks training is computationally intensive, we
use modern GPU and multi-nodes HPC environment to train several
deep learning architectures adapted to time series prediction.

In Section 2, we briefly review the state of the art of the NILM
problem. In Section 3, we describe the data augmentation process to
generate synthetic data used for training. Section 4 presents the ex-
perimental setup for one particular appliance, the water heater, which
is one of the most consuming appliance. This section describes the
different generated datasets and the cross validation methodology
used to assess the intake of the simulator and its ability to gener-
alize, as well as the metrics. We detail the architecture choices and
their performance on water heater consumption prediction using 2
metrics. Section 5 presents the disaggregation results for three neural
network models that were trained on synthetic data and tested on real
data.

2 NILM BACKGROUND

Hart’s [S] work focused on extracting transitions between steady-
state considering a small number of features and used combinato-
rial optimisation to find the optimal combination of appliance states
which minimises the difference between the sum of the predicted
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appliance power and the observed aggregate power. The second his-
torical approach was proposed in 2013, and consist in using Facto-
rial HMM (FHMM) [19], [2]. The power demand of each appliance
can be modelled as the observed value of a hidden markov model.
The hidden component of the HMMs are the states of the appliances.
FHMM can be viewed as an HMM where each state corresponds to
a different combination of states of each appliance. Both of these al-
gorithms are bad at scaling, with a high complexity. Beyond these
methodologies, several improvements have been made to automati-
cally extract hierarchical sets of features. A breakthrough in super-
vised learning was made in 1989 when LeCun successfully applied
neural network and back propagation to handwritten digit recogni-
tion [17]. The fully connected neural network pipeline actually learns
automatically relevant features and makes the prediction at the same
time. This kind of approach took almost 20 years to become the dom-
inant algorithm thanks to the victory in 2012 in the ImageNet Large
Scale Visual Recognition Challenge of a deep Learning approach [3]
and the use of GPU (graphical processor units) which increases dras-
tically computer power computation. Since 2012, deep learning in
most of supervised learning is considered as the state of the art ap-
proach in many complex problems, owing to its ability to learn deep
representations of the data, and build complex parametric functions.
This flexibility has made this method a baseline approach in com-
puter vision [3], natural language processing [6], time series clas-
sication [16] or event audio synthesis [1]. Logically, deep learning
becomes unavoidable to solve the NILM problem. In 2015, [9] used
three neural network architectures (convolutional network, denois-
ing autoencoder, start&end time regressor) to predict the activation
or consumption of several appliances. Using a mix of the UK-DALE
[10] dataset sampled at 6 seconds and synthetic data, Kelly outper-
formed preceding methods like combinatorial optimisation and fac-
torial hidden Markov models [2], [5]. In his experiments, he gen-
erated synthetic data by randomly combining appliance signatures.
The selected appliance must fit entirely in the window presented to
the neural network and is selected with a probability of 0.5. He raised
the point that a realistic simulator that respects temporal structure of
appliance’s activations might increase the performance of deep neu-
ral nets compared to this naive approach which doesn’t consider this
temporal structure.

Several papers were released since 2012, suggesting various ap-
proaches for disaggregation. [4] propose a Seq2Seq and a Seq2point
method, learning the mid-point of sliding windows based on an input
short sequence, instead of the 14,400 time steps signal. This approach
has the advantage to manage smaller window sizes, and avoids the
gradient vanishing problem [14] during the training phase. Most of
recent approaches use a LTSM layer [11],[18], which is more suit-
able for long sequence, using input, output and forget gate to manage
memory and gradient backpropagation. Finally, [13] propose to pre-
dict the operational state change of appliances, using a smaller neural
network architecture and a power threshold value to determine if the
appliance is ON/OFF.

Since sequence modeling is still a opened challenge in machine
learning, an active community is trying to evaluate the best architec-
ture depending on the type of data [16] and has made several im-
provements since Kelly’s paper. In this paper, we evaluate some of
the most promising RNN architectures adapted to long time series
regression.

3 DATA AUGMENTATION APPROACH

3.1 Multi-agent based simulations of human
activity

Gathering training data for NILM is very expensive because it re-
quires many volunteer households to monitor their energy consump-
tion with meters on several appliances. Indeed, for every household,
we need both the aggregated and each sub-metered appliance to build
the training dataset. We encounter three main difficulties in such data
collection: (1) the presence of a many different appliances (oven,
washing machine, fridge..) which are not always available in each
house; (2) the high variability between appliances signatures, both
in terms of amplitude and pattern that we can meet on the appliance
market ; (3) the behaviour of the household occupant, which is pretty
unstable according to the position and the composition of the house.
With a constantly changing energy market, the difficulty to col-
lect enough real aggregated and sub-metered data, and the necessity
to study electrical vehicle consumption and develop personalized ser-
vices, the need for simulated data is on the rise. Facing this challenge,
EDF R&D developed a multi-agent simulator (MAS), which is flexi-
ble enough to adapt to new uses. Quentin Reynaud and Yvon Haradji
[15] proved that the integration of real time use surveys (TUS) in
the simulator improves the realism of simulated individual behav-
iors. The original TUS used in the simulator is based on 10 minutes
activity reports (27000 reports in total) which are representative of
the french population’s behaviour. It helps to establish a sequence of
actions for each profile in the MAS, defined by its duration, thythm
and preferential period of use. In each TUS is taken in account the
localisation, the composition of the household and the type of pric-
ing. These information are valuable in order to represent all the com-
plexity of the electrical consumption behaviour. This result in more
realistic scenarios. The output of the MAS is a sequence of activa-
tion for each available appliances, that is adapted according to the
composition and localisation of the household. Moreover, for each
generated scenario, time of the year, city and household composition
are available in order to use it as additional features in the model. The
simulator is flexible enough to integrate new usages like electrical ve-
hicle, in addition to eleven appliances like kitchen appliances, heater,
vacuum cleaner, water heater or washing machine. Output scenario
can be described as a table in which each column is an appliance,
and rows correspond to time steps. For each time step, each column
indicates if the appliance is activated (1) or not (0).
The final file we consider in this study has the following format (be-
low is the exhaustive list of each available appliances):

—_

. computer : 1/0.
. electrical vehicle : 1/0

1. Time : Timestamp index (2sec).
2. vacuum cleaner : 1/0 (activate or not).
3. water heater : 1/0.

4. washing machine : 1/0.

5. dishwasher : 1/0.

6. light : 1/0.

7. fridge : 1/0.

8. TV : 1/0.

9. oven: 1/0.

0

1

—_
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3.2 Synthetic training data generator

We use weekly MAS simulated scenarios to build a 2 seconds re-
sampled synthetic dataset with the help of real appliances signatures
(apparent power). Appliance signatures are extracted from real data
collected from 27 houses during our own experimentation called
electric data. In comparison, the REDD dataset [8] published by
the MIT uses data coming from 6 houses. The experimentation
enabled us to gather aggregated and sub-metered load curves of a
large variety of appliances. An adaptation of the get_activation()
function created by Kelly that is available in the NILMTK [12] was
used to extract individual appliance signatures from the real dataset.
We adapted the threshold value to extract signatures specifically
for french appliances. Data generation is performed using 10000
weekly scenarios with 10 minutes time steps, and a database of
extracted signatures. These weekly scenarios are first transformed
into 2 seconds time series by repeating O/1 appliance activation
values every 2 seconds within the 10 minutes activation/deactivation
periods. For each appliance type in a generated scenario, we select
a random appliance and then copy random signatures from this
same appliance during the scenario when the appliance is activated.
Notice that in a generated scenario, the different appliances can
come from different houses, providing use diversity in the final
dataset. This allows us to use the same scenario multiple times
and obtain a different generated output, but with a preserved
temporal structure also ensuring privacy. Finally, we sum all
individual appliance consumptions to create the aggregated load
curve of the household and export the result in HDF5 format.

Below, we present the pseudo-code for data generation based on a
MAS generated scenario s. We note:

e n the time length of a scenario (t = 1..n)

e signature(i, j, k) the signature k (k = 1..n; ;) of appliance j
(J = 1..n;) of type ¢ (i = 1..10)

e [oad; the disaggregated load curve of appliance of type ¢, loadagg
the aggregated load curve

For each generated scenario s, we define the procedure to simulate
aggregated and disaggregated load curves:

1. Select scenario s
2. For each type of appliance ¢ appearing in s

e Choose randomly an appliance j of type ¢
e Initialize a vector load; of size n filled with zero values

e For each time step ¢t which is the beginning of an activation of
type of appliance %

— Choose arandom k in 1..n; ;

— Copy signature(i, j, k) to load; from time step ¢ to ¢ +
length(signature(i, j, k)) while the appliance of type ¢ re-
mains active

3. Compute aggregate curve loadagg = Y, load;

Note that if one wants to apply this approach to another area, it
is important to use a time use survey and appliance signatures from
that country because electricity usage varies significantly between
location. As a matter of fact, different countries use different sets of
appliances and there are different usage patterns between cultures.

Our main contribution in this publication is to highlight the need
for a multi-agent simulator to generate synthetic training data and

evaluate the interest on state of the art modeling on long time series
prediction.

4 EXPERIMENTAL SETUP
4.1 Data

In order to fit a baseline neural network model, we reshape the 10000
weekly 2 seconds generated load curves to a daily shape, which gives
us a dataset of 70000 load curves with an input dimension of 43200
time steps.
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Figure 1. Example of generated aggregated and water heater curve (1 day
- 2 seconds sampling rate).

Each model is evaluated on a real dataset composed of 1300 daily
load curves coming from 10 houses for the water heater. The target to
predict is the daily consumption of the appliance in kWh (kilo watt
per hour). This is a regression task.
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Figure 2. Distribution of train/test water heater consumption in kWh.

4.2 Data preparation for cross validation
experiments

In order to evaluate the performance of our regressor on the predic-
tion of consumption based on the daily consumption curve, we gen-
erate 10 training datasets. Each dataset excludes the signatures of
one house: the excluded house signatures are then used for creating
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Figure 3. Data source for train and test generation.

the corresponding test set. Excluding the test house’s signatures from
the generated training dataset is important if we don’t want to be too
optimistic and assess the ability to generalize on unseen houses. We
train 10 models (one for each training dataset) and predict the house
excluded from the dataset to compute the final performance.

The goal of these experiments is to determine whether a
synthetic dataset can replace a real dataset and test the base-
line architecture capability of generalizing over curves with
consumption signatures that were not used for training.

We first define the following training and test datasets:

e D1, D5, ...Dqp are the datasets of real real data corresponding to
each of the 10 houses and D is the union of these datasets.

e If we choose house k = 1..10 as the house selected for testing,
we note:

— Diest = Dy, the test set (purple in Figure 3)

— Dyeai = D — Dy, the training dataset containing real data of
all houses except house k (green in Figure 3)

— Dgyntn the synthetic dataset obtained with the MAS approach
using signatures from all houses except house k (orange in Fig-
ure 3)

Then we define the different training and test setups:

e Baseline Learning: train a model M1 on Dgyn¢n, and test on
Dtest~

e Transfer Learning FL (Full Layers): fine tune all layers of M
on Dyeqr and test on Dyest.

e Transfer Learning 2L (2-Layers): fine tune the 2 last layers of
M on Dy.cq; and test on Dyest.

e Full Learning: train a model M> on the union of Dgyp:, and
Dyeqr and test it on Dyes.

e Subset learning: train a model M3 on D,..q; and test on Diest.
The training is slightly unstable due to the small size of the train-
ing dataset.

4.3 Standardization

Individual energy consumption data is generally skewed to zero, thus
training is less stable if we use raw input data. In time series classi-
fication or regression, preprocessing is an important task as it influ-
ences the way of learning. An instance preprocessing based on local
mean will focus on shape, whereas a global normalization will fa-
vor the level of the curve. To standardize input, we first use the hy-
perbolic arcsinh with a parameter o which unskews the data and

makes statitics of the data less sensitive to outliers, then we normal-
ize the result. Normalization is then just a rescaling which speeds up
training as follows:

Y — arcsinh(o * X) n

«

_ X/—/J,X/

XH (2)

Ox/

Mean and standard deviation of the training set is used to stan-
dardize the test dataset.

4.4 Neural networks architectures

We have tested two main architectures inspired from sequence mod-
elling, time series [20] [7] and signal analysis prediction. The best
architecture was then used to evaluate our model’s cross validation
performance as explained in 4.2.

Likewise [4], we choose to model the problem with a SeqToPoint
and a SeqToSeq architecture. Suppose that we are given an input
sequence (zo, z1,..,x7) , and wish to predict some corresponding
outputs (§g, .., J%) at each time. The Seq2Seq model consists in pre-
dicting ¢, that represent the estimated consumption of appliance i at
time ¢. The SeqToPoint architecture focuses on estimating 4° which
is the consumption of the whole input.

The two considered neural network architectures are the follow-
ing:

e Time Distributed convolutional networks: we reshape the input
from a (43200) shape to a sequence (48,900) of 48 timestamps.
This approach was successfully implemented by the University
of Tianjin [7] to estimate machine health from a multi-sensory
input. We use this architecture both for SeqToPoint and SeqToSeq
model. The prediction of the second one is calculated by summing
all the predictions. It means that based on the model (¢, .., Jis) =

F(x0,1,..,T4s), we have §° = Zfil yi

The ConvBlock is built with 64 filters, a kernel size of 5, batch
normalization and max pooling of size 2. The activation function
is ReLU for all layers. The Flatten layer is replaced by a Global-
AveragePooling layer. The final layer is a bi-directional LSTM of
size 128.

e Temporal Convolutional Network (TCN) is directly inspired by
the Wavenet model [1] which is more convenient for long time se-
ries analysis. The specificity of the TCN is to take the full signal
as input and use causal dilated convolutions in order to respect the
sequence’s temporal order. [16] suggest that TCN should be con-
sidered as a natural starting point for sequence modeling, machine
translation and sentence classification, by empirically proving that
it gives a better performance than the recurrent architecture.

The TCN model is built with 64 filters, a kernel size of 2, a dilation
rate from 1 to 16384 (214) and a dropout rate of 0.2.

Both architectures are trained with the adam optimizer with an
annealing learning rate from 0.01 to 5¢10~°. We do this by setting a
more important decay rate in the optimizer in order to accelerate the
decrease. A L2 regularizer on the weights is used with a coefficient of
0.05, knowing that the network can easily over-fit faced to the small
dataset.
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Figure 4. Time-Distributed architecture.
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Figure 5. TCN architecture.

4.5 Evaluation metrics

We use two metrics to evaluate the quality of the regression: MAE
(mean absolute error) and SMAPE (symmetric mean absolute per-
centage error) which are commonly used for regression. They have
the advantage of being robust to outliers.

n s o test
MAE = Z |y1 nyz |
k=1

3

est|

SMAPE = Z l'”l )

il + [y

4.6 Loss function

We use a classical mean squared error loss function to train the
model, defined as follows:

n

_1 )2
Loss = - Z (Yi — vi) )]

i=1

The loss function log(cosh) have been considered, knowing his
good property for managing skewness distribution of target, but
doesn’t improve results.

5 EXPERIMENTAL RESULTS
5.1 Choice of the best architecture

In order to choose the best model, the architectures presented
in Section 4.4 were tested on the whole synthetic dataset (Base-
line Learning setup defined in Section 4.2. Two variants of the
Time-Distributed architecture were also defined: (1) Time-distributed
(seq2point) (2) Time-distributed seq2seq which predicts the full se-
quence.

Table 1. Baseline regressor results.

Models MAE (kWh) SMAPE
Time-distributed 1.76 26.3%
Time-distributed seq2seq 1.82 26.8%
TCN 2.46 39.70%

As can be seen in Table 1, the Time-Distributed architecture ob-
tains the best score both in MAE and SMAPE. We choose this archi-
tecture to conduct the experiments described in section 3. The TCN
architecture gives promising results but was difficult to train due to
the sequence length and the small batch size. We used Horovod li-
brary to accelerate the training on GPUs.

Figures 6 and 7 show the MAE and SMAPE measures in relation
with the value of water heating consumption in each house. Note that
houses 12 and 14 consume excessively compared to other houses but
represent only 15% of the data.
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Figure 6. MAE per house for Time-Distributed network.
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5.2 Cross-validation results

The Time-Distributed architecture which performed the best on the
whole synthetic dataset was thus selected for the cross validation pro-
cedure. We now want to highlight the fact that a model trained on our
synthetic dataset is better than one trained on our real data.

Table 2 presents the results of the procedure for the different
training and test datasets, as described in Section 4.2. As for cross-
validation, the mean values of MAE and SMAPE were computed
over the 10 houses.

Results show that the best performance is obtained by the Base
Learning and Full Learning approaches, i.e. using the synthetic train-
ing set. We can notice that transfer learning degrades the performance
of the neural network. It can be interpreted by the fact that the net-
work overfits on the real houses despite the low learning rate and that
we only train the two last layers. On the other hand, as house profiles
are highly diversified, specializing the regressor on a small set of data
does not allow to generalize on unseen house.

Table 2. Cross validation results.

Models Data source  MAE (kWh) SMAPE
Base learning MAS 1.92 28.53%
Transfer-learning FL real 2.55 35.83%
Transfer-learning 2L real 2.75 37.83%
Full learning MAS-+real 1.92 29.26%
Subset learning real 3.13 75.711%

6 CONCLUSION

Multi-Agent Simulations (MAS) should be considered as a serious
option to solve the NILM problem and build models able to gener-
alize on unseen data. This work shows that a MAS calibrated with
real time-use surveys can provide high quality synthetic data and
achieve decent performance on disaggregation for high consumption
appliances. However, the quality of the generated data and regressor
performance could be greatly improved if more real appliance signa-
tures were available. Real annotated data is still important to assess
the quality of the prediction. Furthermore, an architecture with a mix
of convolutional and recurrent neural network are still a strong base-
line choice for sequence modelling, even in the case of long time
series prediction.
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