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Abstract. Worldwide, many cities spend considerable effort to re-
duce traffic and specifically to avoid traffic congestions. Adaptive
traffic control systems serve this purpose by dynamically adjusting
traffic signals for optimizing the traffic flow on intersections. Systems
such as SCOOT are based on an “intelligent” combination of differ-
ent traffic optimization strategies. However, they miss the possibility
(i) to add and change on-demand rules to implement new optimiza-
tion strategies, and (ii) to simulate the outcome of new strategies
on-the-fly which is similar to the capabilities of microscopic traffic
simulation tools such as SUMO. In order to overcome the above
limitations, we present a novel approach for calculating signal phase
plans (SPPs) used for optimizations in traffic control systems. Our
approach is based on Answer Set Programming (ASP) and combines
ASP encodings of an abstract mesoscopic flow model and a strategy
for generating possible SPPs. Experimental results shows that traffic
simulation can be well approximated and that the generated SPPs
improve the traffic flow effectively.

1 Introduction
Many large cities worldwide spend considerable effort to reduce the
overall traffic, for instance, by limiting parking space or introducing
congestion pricing. Despite these efforts, traffic congestions are still a
large problem with an estimated cost of $87 billion for the U.S. econ-
omy in 2018 as estimated by the World Economic Forum [9]. Urban
Traffic Management (UTM) solutions are one of the technology-based
strategies to reduce traffic congestions. One cornerstone of UTM so-
lutions are (near) real-time, adaptive traffic control systems such as
SCOOT [5], which are used to dynamically control traffic signals to
optimize the traffic flow on intersections. However, the most success-
ful systems such as SCOOT were developed in the 1980s and are
based on an “intelligent” combination of different traffic optimization
strategies, but miss the possibility (a) to add and change on-demand
rules to implement new optimization strategies, and (b) to replicate
microscopic traffic simulation tools such as SUMO [17], which allow
to simulate the outcome of new strategies on-the-fly.

Our main challenge is to support reasoning on the level of micro-
scopic traffic simulations, in order to predict the behaviour of traffic
flows for extracting quality criteria, and to find better or even opti-
mal signal plans with respect to these quality criteria. As the solution
space is huge, the goal is to find suitable optimization strategies which,
ideally, can also be applied online.

Standard traffic simulations tools such as SUMO allow for micro-
scopic simulation runs, but they do not provide any native support
for reasoning over simulation models. Moreover, running millions of
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simulations (even with automated support) is not a basis for feasible
solutions, if new signal plans have to be calculated online to react
on changing traffic patterns. A common way to overcome this are
macroscopic traffic flow models, in which one abstracts over the in-
dividuals and uses aggregated values such as the number of vehicles
on a traffic segment. However, the inherent loss of information since
the road network and signal plans are not fully represented, makes
such models imprecise approximations of reality, whose quality may
be insufficient for targeted applications such as adaptive green wave
coordination.

In this paper, we consider a middle-ground and develop a meso-
scopic flow model which abstracts not only individual but also time
and the road network to reduce complexity. On the other hand, it
keeps useful details of the network structure to achieve a good quality
of the abstraction such that the results approximate microscopic flow
models. Briefly summarized, our main contributions are as follows:
• We present a new mesoscopic model for traffic flow, which features
(a) nodes of different types (source, link, intersection, and sink nodes),
(b) distribution from incoming to outgoing edges, via individual rates,
and (c) denial constraints on (pairs of) edges regarding possible status
(in particular, signal phases) to ensure safety (Section 3).
• We develop an encoding of the flow model in Answer Set Program-
ming (ASP), which allows us to generate the abstract runs of concrete
traffic flows in the answer sets of the ASP encoding; in this way, it is
possible to reason at a high level about traffic flows (Section 4).
• We address the problem of signal phase plan (SPP) configuration,
for which we propose different optimizations strategies. We describe
an ASP encoding of one such strategy, which takes advantage of the
modeling power of ASP (Section 4).
• Experimental results show that the approach is promising, as initial
SPPs could be significantly improved, and in most cases even optimal
SPPs could be found (Section 5).

Our results are encouraging and show the potential of an ASP based
approach for traffic flow studies, which allows for flexible modeling
and problem solving.

2 Preliminaries
2.1 Answer Set Programming
For problem solving and optimization, we adopt the declarative An-
swer Set Programming (ASP) paradigm [7, 6, 24]. ASP is based on
non-monotonic logic programs, whose core rules are of the form

a← b1, . . . , bn, not c1, . . . , not cm

where a and all bi, cj are atoms in a first-order predicate language
and ”not” is negation-as-failure (NAF); a may be missing, which then
yields a constraint. Intuitively, a is inferred if all bi and no cj are
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inferred. The stable models (aka answer sets) of a program are special
Herbrand models that satisfy a fixpoint condition [12].

In ASP, problems are encoded to logic programs P such that the
answer sets I of P represent solutions; using a “guess and check”
(aka generate-and-test) methodology. A program P consists of [8]:

1. non-deterministic rules with unstratified negation (or disjunction
in the heads) to generate candidate solutions;

2. constraints that check whether a candidate solution is suitable; and
3. auxiliary rules used in the first and second part.

Optimal solutions may be determined using special directives, e.g.,
#maximize V selects the solution where V has the largest value
[11]. Further notions and examples will be given in Section 4.3.

2.2 Traffic Flow Models
Roughly, road traffic can be described using the concept of traffic flow,
which is measured by predefined variables such as speed and density
of vehicles on a predefined location over a predefined time span [13].
Traffic flow itself is often described by the qualitative states of free
flow, traffic jam, and a state of synchronized flow [14]. Predefined
variables can be used to describe local (resp., global) aspects, which
we call local (resp., global) variables. Local variables are measured
on specific road segments and time intervals of length sd or time
points t and may include (see [13] for more variables)
- Traffic flow count: qS = n

sd
, where n is the number of vehicles that

pass a cross-section S during the (span of) a time interval sd;
- Average speed: sX(t) = o, where o is the average speed of all

vehicles on a segment X at a specific time point t.
Global variables describe the whole network and are extracted over
a longer time span and serve as a base for overall performance mea-
surement; e.g., average speed of all vehicles for a simulation run.

A more powerful approach to gain insight into traffic control and
optimization are traffic flow models. A common classification is based
on the dimension of representation (vehicle or flow based) and the
granularity of behaviour rules (microscopic vs. macroscopic) [13].

Macroscopic Flow Models. A basic macroscopic model for traffic
dynamics uses queuing theory, where the number n of vehicles in a
queue is observed [13]. The latter results as the difference between the
inflow to a bottleneck node (q), e.g., an intersection, and its capacity,
which determines the outflow of the queue (denoted as C). The time-
dependent flow model can be written as: dn = q(t)dt − C(t)dt,
where dn is the change in vehicle number and dt a time span over t.

Microscopic Flow Models / Traffic Simulations. A microscopic
model is based on the properties and behaviours of individual vehi-
cles, which may emerge from an internal agent model that reacts on
external stimuli such as other vehicles. A central agent model is the
car-following model, which describes the interactions with preced-
ing vehicles, where either a general car-following, safety-distance, or
psycho-physical car-following model can be applied [25].

Microscopic traffic simulations are one of the standard tools for
UTM practitioners to conduct offline studies and experiments in or-
der to validate novel traffic control techniques. Several tools sup-
porting microscopic traffic simulations are available, with SUMO
[17], MITSIM [4], VISSIM (http://vision-traffic.ptvgroup.com/en-us/
products/ptv-vissim/), and AIMSUN (https://www.aimsun.com/) among
the most prominent. Our work is based on SUMO, as it is available
under an open source licence and customizable using PYTHON scripts.

Mesoscopic Flow Models. Mesoscopic flow models were devel-
oped to fill the gap between macroscopic and microscopic models,
where different levels of aggregations are introduced, but also the

behaviour of individual vehicles or traffic control systems are rep-
resented. Headway distribution, cluster, and gas-kinetic models are
applied to represent the mesoscopic flow [15].

3 Symbolic Mesoscopic Flow Model
Our model covers the elements of a microscopic and a macroscopic
flow model such as (1) the static traffic network and intersection
topologies, (2) dynamic states such as vehicle counts and signal phase
states, as well as (3) the transformation in the dynamic states. It is
accordingly composed of a static component defining the road network
and local topologies, and a dynamic component defining traffic flow,
which is based on (a) a time model using a timeline, data items of
aggregations, and streams, (b) traffic flow generation for different
node types, to capture the number of vehicles present at different time
points; and (c) signal phase plans, to capture the generation of signal
phases at different time points.

Example 1 Figure 1a shows a road network in SUMO with two
intersections that connect three roads (one horizontal and two vertical)
with two incoming and two outgoing lanes for each road. Figure 1b is
the extracted mesoscopic flow model of Figure 1a including nodes for
intersections, links, sources, and sinks.

3.1 Static Component
The static traffic model describes the structure of the road network
including the roads, lanes, intersections, intersection topologies, and
traffic control installations such as traffic lights (TLs). Traffic control
installations have one or more TL signal groups attached and are
managed by a TL controller, which assigns red (for stop) and green
(for go) states to signal phases. We assume for our setting that we
have a global TL controller that manages all intersections. The signal
phases for each signal group are encoded in a “default” signal plan,
where the green/red split of a full phase length is defined. Usually,
each pair of adjacent incoming lanes has one signal group assigned.

Let N be a road network of several intersections. Its static compo-
nent is represented by a directed, labeled graph

GN = (V,E, lV , lE , RV , RC), where

• the nodes V represent real entities (e.g., intersections) or virtual
(e.g., boundary to external environment) “crossing points”. Every
node v ∈ V has a fixed type tp ∈ {src, snk, ins, lnk} assigned,
denoted as v : tp where src means source node, snk sink node,
ins intersection node, and lnk link node.

• the edges E represent entire lanes or segments of lanes, and define
the (possible) traffic flow in the network by connecting the nodes.

• lV and lE are a node and edge labelings and provide contextual
information. The function lV : V → N+ assigns the bottleneck
capacity to each node, thus defining the highest possible throughput
of vehicles at a single time step, while the function lE : E →
N+ assigns the maximum load capacity to each edge that is the
maximum capacity of cars that can simultaneously be located on
an edge.

• relation RV ⊆V ×E×R+ captures the traffic flow distribution:

RV = {(v, e, w) | v ∈ V, v : ins, e=(v, v′) ∈ E, 0 < w ≤ 1}.
If w is not defined, there is no traffic outflow to e, if w = 1 all
traffic flows to e. For example, intersection v1 with an incoming
lane e1 = (s1, v1) and two outgoing lanes e2 = (v1, s2) and
e3 = (v1, s3), then an even split of traffic flow is represented as
RV = {(v1, e2, 0.5), (v1, e3, 0.5)}.
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Figure 1: (a) Rendering of two intersections in SUMO and (b) corresponding mesoscopic flow model

• the relation RC ⊆ E × E captures implicit denial constraints on
an intersection for safety, to ensure that orthogonal crossing lanes
are not in a green phase at the same time point.

Segmentation. The static component is extracted from a given traffic
simulation model (such as one generated by SUMO) by segmen-
tation. A simple segmentation algorithm has the following steps:
(1) uniformly segmentate the road network, i.e., divide whole lanes
into individual segments of similar (ideally same) length; (2) reduce
it to equi-distant edges and nodes representing GN ; (3) generate
source/sink nodes for the boundary of the network. Step (2) reduces
the complexity of the simulation model as follows:
1. reduce each intersection to a single node,
2. generate the relation RV from the intersection topology, using

(offline) traffic distribution statistics to estimate the weights, and
3. merge adjacent incoming (resp. outgoing) lanes to a single incom-

ing (resp. outgoing) edge.
The lane splitting in Step 1) allows us to assign (a) the same capacity
and (b) the current traffic flow count for a uniform time interval sd to
each edge. The uniform segmentation is central to our approach, as it
makes the propagation of traffic through the network in the dynamic
component much simpler. Segmentation is a preprocessing step, and
creates a graph as depicted in Figure 1b.

3.2 Dynamic Component
The intuition of the dynamic component of our model is illustrated in
Figure 2. It extends the static component with temporal information
related to single simulation steps also called time points. The temporal
information consists of two kinds of data items which might change
in each simulation step: (a) the number of vehicles (NrV), which is
the count of vehicles on a specific edge, and (b) the signal phase
states (SPS), which is the TL status of specific incoming lanes on
(intersection) nodes at a specific time point. Note that the data includes
“real” observed data extracted from the simulation model, but also
values derived from the extracted data.

Time Model. The underlying time model is interval-based and cap-
tures the interval length sd (duration) of a single simulation step
delimited by the finishing time ti of the simulation step. However,
the data model used is point-based and captures only ti, thus ex-
pressing that a data item is valid between t(i−1) and ti, where the
difference sd = ti − ti−1 is the duration. Using a point-based model
does not lead to a loss of information, given that we have a uniform
segmentation of the timeline that can be captured by time points.

For capturing a full traffic simulation run, we introduce the timeline
T = [0, l] ⊂ N, which is a closed interval of length l (also referred to
as simulation length tl). A simulation stream is a pair D=(T, f) of

a timeline T and a function f : T→ 2O that assigns to each element
(time point) t ∈ T a set f(t) ⊆ O of data items; O is the set of tuples
of form 〈o, x〉, where o ∈ R is a real number and x ∈ E.

Data items are one form of abstraction in our model, where NrV
or signal phases (represented by numbers) are aggregated over the
duration sd. As said, we have two streams:
(1) the stream DNrV = (T, f1) of vehicles counts, where each f1(i)
consists of edge data items. This way, we link NrV data (generated
only by nodes) to edges.
(2) the stream DSPS=(T, f2) of signal phases, where f2 is defined
accordingly with the difference that the observed values o are binary
encodings of the signal states: red is 0, green is 1; f2 consists of data
items 〈o, e〉, where e = (v′, v) is an incoming edge to an intersection
node v. Thus, SPS data items are only assigned to incoming lanes of
an intersection, which captures the intuition of a signal phase plan.

For convenience, we use for fi the notation x@t if x ∈ fi(t), e.g.
〈o1, e1〉@t1, and 〈o2, e2〉@t2.

Traffic Flow Calculation. The traffic flow (TF) calculation brings
dynamicity into our model, by capturing the vehicle flow. It generates
NrV data items based on the mentioned nodes, and assigns them at
the next time point to edges in the network. Sink nodes play a special
role and accumulate the incoming data items, but do not generate data
items themselves.

A TF calculation is performed at each time point ti and adds for
each edge ej ∈ E in our network the new data items for stream
DNrV . It is based either on the incoming edges for intersection and
link nodes, or on a predefined generation function for source nodes.
The result of each node’s calculation are new data items that are
propagated to the outgoing edges, updating their state. The state of an
edge is captured by the set of data items attached to it on a specific
timepoint ti. Figure 2 illustrates three calculation steps for four time
points represented by the dotted arrows. Simplest is the calculation of
link nodes, as one incoming NrV data item generates a single outgoing
data item. Intersection nodes are more difficult to handle, as incoming
data items must be split into more outgoing data items according to
the TF distribution to the outgoing edges.

Source nodes. A source node v : src generates for each time point
NrV data items according to a given function as follows, where e =
(v, v′) is an updated outgoing edge:

fsrc(v, e, tj) = 〈min(lE(e), fD(tj+1)), e〉@tj+1,

where the value generation function fD(tj+1) is a stochastic function
that creates a new value for time point tj+1 based on a predefined
distribution model. Its purpose is the replication of demand mod-
elling functionality of traffic simulations, with for instance a constant
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Figure 2: Example of three calculation steps for time points t1 to t4;
data items with o = 3 are generated in i1 and propagated via lnk12
to i2, where they are collected up to the load capacity limit of 10 due
to bottleneck capacity of 0.

generation of the same NrV data item for each ti.

Link nodes. A link node v : lnk propagates for each simulation step
a NrV data item from a source edge e1 = (v1, v) to a target edge
e2 = (v, v2) as follows:

flnk(v, e1, tj) = 〈min(lV (v), lE(e2), flnk′(e1, tj)), e2〉@tj+1,

where function flnk′(e, t) returns the value o in 〈o, e〉@t taken from
stream DNrV . Note that for link nodes, only one incoming and one
outgoing edge is allowed (otherwise segmentation creates an intersec-
tion node).

Intersection nodes. An intersection node v : ins aggregates the differ-
ent NrV data items from incoming edges, and distributes them to the
outgoing edges according to the predefined ratios of relation RV . For
each outgoing edge e = (v, v′) of intersection v, we have

fins(v, e, tj) = 〈min(lV (v), lE(e), fins′(v, e, tj)), e〉@tj+1,

where wv,e is given by RV (v, e, wv,e) and fins′ is as follows:

fins′(v, e, tj) =
∑

ei=(vi,v)∈E
〈oi, ei〉@tj · wv,e · fsps(v, ei, Sv, tj) .

In fins′ , we slightly abuse the notation as we do not sum up and
multiply the tuples 〈oi, ei〉 but only their values oi. The function fsps
returns the signal state tuple (with o′i = 0 or o′i = 1) for ei at tj , thus
ignoring incoming lanes which are on state 0; details of fsps will be
given in the next section. The relation RV is important, as it defines
the “weights” of the outgoing values that are summed up; it can also
be used to close lanes by setting the weights to 0.

Sink nodes. A sink node v : snk does not generate values on its own,
but collects all NrV data items of incoming edges at each time point.
The aim is to record the number of vehicles that have left the network.
The sink generates result tuples

fsnk(v, tj) = 〈fsnk′(v, tj), v〉@tj+1, where

fsnk′(v, tj) =
∑

ei=(vi,v)∈E
〈oi, ei〉@tj .

Sink nodes will play a central role later, as the impact of an improved
signal plan can be determined using the accumulated sink nodes.

Signal Phase Generation. Streams of signal phase states (SPS) are
similar to TF streams, but only consider SPS data items, i.e., from
OSPS = {〈o, e〉 | o ∈ {0, 1}, e = (v′, v) ∈ E and (v : ins) ∈ V }.

Signal phase states, shortly signal states, for traffic lights are defined
in signal phase plans, where we assume that each intersection has
one plan assigned that covers all the signal groups and lanes of the
intersection. In Figure 3 we give an example of a signal plan as used
in SUMO. The length of a full cycle is the sum of durations (60 in
our example). Each signal group state is shown in state, where “r”
, resp., “G”, represents red, resp., green phases for the duration. Note
that in this encoding, each position is an index and assigns the state
to a signal group, i.e., the first position defines the state of the signal
group for first lane. The plan also shows implicit constraints, e.g., that

<tlLogic id="I1" type="static" programID="0" offset="0">
<phase duration="30" state="rrrrGGGGGGGG"/>
<phase duration="30" state="GGGGGrrrrrrr"/>

</tlLogic>
<tlLogic id="I2" type="static" programID="0" offset="0">
<phase duration="30" state="GGGGGGrrrrrrGGGGGGrrrrrr"/>
<phase duration="30" state="rrrrrrGGGGGGrrrrrrGGGGGG"/>

</tlLogic>

Figure 3: Example of a signal plan as used in SUMO

the groups at position 1-4 and 5-12 should not be green at the same
time. From the SUMO encoding shown in Figure 3, we can conclude
that a formal signal plan has to include the following components: a
fixed cycle length, a timeline covering the phase time for each signal
group, where red/green states have alternating time slots, and a list
with pairs of denial (lane crossing) constraints.

More formally, a signal plan sv can be represented by an n×m
matrix S, where the columns n represent time points and the rows m
are lanes. As defined above, a state si,j can be either 0 (red phase) or 1
(green phase). The matrix Sv for m incoming lanes of an intersection
v over the simulation length n is thus:

t1 t2 ... tn

l1 s1,1 s2,1 ... sn,1
...
lm s1,m s2,m ... sn,m

The signal plan sv associated with an intersection node v can also be
represented by a function that associates with v and any incoming
edge e = (v′, v) a signal state at a specific time point:

fsps(v, Sv, e, tj) = 〈pos(Sv, tj+1, e), v, e〉@tj+1,

where the function pos(Sv, t, e)) extracts from Sv the state (0 or 1),
depending on the position of time point t and edge e in Sv .

3.3 Frame Axiom and Evaluation Order
The above definitions cover the case when we have a “free” movement
of vehicles. They do not cover the case when we have no or fewer
movements (in NrV) due to a red signal phase or low bottleneck
capacity defined in lV . Ignoring these, we face a loss of a NrV in the
next time step; hence we have to generate also NrV data items for non-
movements. For this purpose, we introduce two functions ffr1 and
ffr2, which preserve NrV data items that are not moved. The function
ffr1 is defined for an outgoing node e(v′, v) of an intersection v and
NrV data item 〈oN , e〉@tk as follows:

ffr1(e, v, oN , tk) =


〈min(0, oN − lV (v)), e〉@tk+1,

for oS = 1 of 〈oS , v〉@tk+1;
〈oN , e〉@tk+1,

for oS = 0 of 〈oS , v〉@tk+1.

In the first case, the signal phase is on green, so we subtract the
maximal NrV for movements, i.e., the bottleneck capacity, from the
NrV at tk to calculate the remaining NrV at tk+1. In the second
case the signal phase is on red, hence we have no movement and the
existing NrV on edge e at tk is still on edge e at tk. The function ffr2
is defined along the same line, for an outgoing node e(v′, v) with an
intersection node v and an NrV data item 〈oN , e〉@tk:

ffr2(e, v, oN , tk) = 〈min(0, oN − lV (v)), e〉@tk+1.

The above functions are akin to frame axioms in logic-based AI
planning [18]: they cover the cases where the bottleneck capacity of
lv bounds the maximum flow. If the actual flow is smaller as up-flow
edges at the next time point are already saturated, NrV data items get
lost. This loss is an effect of the abstraction in our mesoscopic model,
where a saturation does not spill back to down-flow edges. Adding
the latter, which is observable in microscopic models, is challenging,
in particular in case of cyclic traffic flows.
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Evaluating the functions fsrc, flnk, fins, ffr1 and ffr2 over all
nodes in V and and time points in T limited by the simulation length tl,
naturally induces a stream DNrV = {〈o1, e1〉@t1, ..., 〈oj , ek〉@tl}.
Similarly, evaluating fsps over all intersections in V and time points
up to tl, induces a stream DSPS = {〈o1, e1〉@t1, . . . , 〈oi, ek〉@tl}.

The only requirement in the evaluation order of the above functions
is the temporal order, where all functions of time point ti are evaluated,
before the functions of ti+1 are started.

4 ASP-based Problem Solving and Optimization
The mesoscopic flow model from above describes the quality of a
network with a fixed signal phase plan (SPP), where the quality is
calculated over a pre-defined number of time steps through summa-
rizing the sink nodes at the last time point. This abstract flow model
however, does not include any strategy to improve such plans, which
should lead to our main goal of optimizing the traffic flow by adapting
SPPs. As the next step, we will provide the encoding for optimizing
traffic flows based on different configurations of SPPs.

4.1 Generic Problem Solving Strategies
As the aim of this work is the (re-)configuration of SPPs, we introduce
three candidate plan generation strategy that can be applied to (a)
generate entirely new or (b) improve existing SPPs.
We call a full set of assigned states in matrix Sv for v an SPP con-
figuration, where all states are either 0 or 1. The different solving
strategies aim at finding “good” candidates of SPP configurations
based on Sv under the constraints RC from the static component. We
discuss here some strategies for generating SPP configurations.

S1: Random generation. The first strategy S1a is the simplest way
to generate SPP configurations. A single random assignment for an
intersection v is generated by the following steps:
1. start with an empty matrix Sv , and fill it randomly with 0 and 1;
2. repair two states that violate the (crossing lanes) constraints of RC

by setting one of them to 0.
Step 2) is needed to rule out “unsuitable” configurations, where vehi-
cles move simultaneously on crossing lanes. Moreover, S1a generates
fragmented configurations, which are not usable in practice. An im-
provement of S1a is strategy S1b, which ensures that larger state
blocks of length ln are generated randomly; this leads to fewer and
longer signal phases. Like S1a, it needs the repair step which could
reintroduce more fragmentation.

S2: SPP Shortening/lengthening. In strategy S2, we assume that
existing SPPs are already in place, but temporal adjustments are
needed due to changes in traffic patterns. The most generic SPP used
in S2 is an uniform distribution of signal phases over the incoming
lanes. We start with a filled matrix Sv called base SPP that captures
the current plan for intersection v and proceed as follows, where
c = [cn, cp] is a given adjustment parameter:
1. extract from Sv for each lane lj in v the segmentation (by

red phases) of green signal phases, denoted as GPlj =
{gp1, . . . , gpk};

2. guess for each gpi two values cbi and cei from c, to change gpi at
its beginning by cbi and at its end by cei , where a negative value
means shortening and a positive value enlarging;

3. check if the guess satisfies RC ; if so, apply cbi and cei on gpi.
Note that this strategy needs a reasonable range for interval c, as it
affects the number of configurations twice (at gpi’s begin and end).

S3: Templates with SPP Shortening/lengthening. Strategy S2 does
not perform well, if the underlying SPP is inefficient. A way to over-

come this is to extend S2 with SPP templates of varying structure.
Given a set ST = {st1, ..., stk} of templates, we proceed as follows:
choose a template sti from ST , and adjust the length of sti according
to the simulation length l, and then proceed as described in S2.

4.2 Problem Size and Optimization
The problem size size(S) of a strategy S is the count of all possible
configuration candidates generated by S. The parameters are the SPP
matrix M = n×m, the state space of |{0, 1}| = 2, and further ones
depending on the strategy. For strategies S1-S3, we obtain:
- size(S1a) = 2(n·m), e.g., for two lanes over 10 time steps there

are 2(10·2) = 1, 048, 576 candidates;
- size(S1b) = 2((n/ln)·m), where ln is the phase length. E.g., the

above example with ln =2 has 2(5·2) = 1, 024 candidates;
- size(S2) = 2(2·|c|·m), where c = [cn, cp] is the adjustment pa-

rameter for signal phases. E.g., c = [−1, 1] with |c| = 3 and two
lanes yields 2(2·3·2) = 4, 096 candidates;

- size(S3) = lst · 2(2·|c|·m), where |c| is as above and lst = |ST | is
the number of templates. In our example, we have 8, 192 candidates.

As easily seen, strategy S1a is infeasible for real-world networks, due
to a rapid growth of candidates that is exponential in n and m.

Optimizations. Even with the most economic strategy S2, enumerat-
ing all configuration candidates to find the optimal solution is infeasi-
ble. Quality indicators can thus be used to (a) guide the search to find
solutions faster using soft constraints, and (b) restrict the search space
using hard constraints. As remarked in Section 3, the sinks in the
mesoscopic flow model keep the NrV data items for all time points;
the quality indicator QNrV for traffic flow is thus defined as:

QNrV =
∑l

i=0,vi : snk 〈oi, vi〉@ti.

Another intuitive indicator, obtained from the SPP matrix M = n×m,
is the number of time points with SP status 1 (i.e., green); it measures
the length of all green SPs (whose maximization may increase the
traffic flow). The quality indicator QSPS for a matrix S is defined as:

QSPS =
∑n

i=0

∑m
j=0 si,j .

The two indicators can be combined using optimization statements
and strong constraints (for cut-off) as follows: (a) maximize QNrV ,
then maximize QSPS , (b) maximize QSPS , then maximize QNrV ,
(c) maximize QNrV and cut-off QSPS , and (d) maximize QSPS and
cut-off QNrV . In cases (a) and (b) weights can be used to prioritize
one of the indicators, and in cases (c) and (d) a reasonable cut-off
value for the constraints must be estimated.

4.3 ASP Encoding of Strategy S2
We next illustrate the ASP encoding for the signal plan optimization
problem. The encoding is divided into two programs PI , which con-
tains the data encoding, and PG, which contains the guess-and-check
problem encoding.

Data Encoding (PI ). The program PI must be adapted for each
traffic simulation and includes the static components of the flow
model, the materialization of all generated NrV data item over time,
and the materialization of matrix M holding the initial SPP over time.

We start with the ASP encoding of the (traffic) network graph
GN = (V,E, lV , lE , RV , RC), where V is represented by predicates
node src (for source), sink, link, and intersection nodes, where the
predicate edge defines the edges of E and predicate link constructs
the graph based on edges and nodes.

As an example, we give an encoding for five nodes n1, ..., n5 and
four edges, which are linearly connected:
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node src(n1). node ins(n2). node lnk(n3). node snk(n4).

node snk(n5). link(n1, n2, we). link(n2, n3, we).

link(n3, n4, we). link(n2, n5, we).

The label functions lV and lE are simplified given that the bottleneck
and load capacities are uniform; e.g., we set lV () = 16 and lE() = 10.
This can be represented using constants

#const maxflow = 10. and #const maxcap = 16.

The relation RV represents the traffic distribution of the intersections
in the traffic network. We use the predicate link ratio(n1, n2, r),
where n1 is an intersection node, n2 forms with n1 an outgoing edge
e = (n1, n2), and r is the percentiles of vehicles moving out on e.
E.g., uniform distribution on the outgoing lanes of n2 is defined by

link ratio(n2, n3, 50). link ratio(n2, n5, 50).

The relation RC is encoded as conflict tl(J,X, Y ). It states that
two edges (J,X) and (J, Y ) are not allowed to have green phases
simultaneously. Continuing the example, we we declare that (n2, n3)
and (n2, n5) are conflicting:

conflict tl(n1, e2, n3).

conflict tl(J,X, Y )← conflict tl(J, Y,X).

The rule here is convenient to ensure that RC is symmetric.
Besides static facts, we define in program PI also the temporal

horizon by time(0..tl), where 0..tl is stands for all time points be-
tween 0 and the simulation length tl. For instance, time(0 .. 15) sets
the simulation length to 15.
Another important temporal predicate is tl plan red(X,Y, T1, T2),
which materializes all red phases up to tl. The tuple (X,Y ) is an in-
coming edge to an intersection Y , and [T1, T2] is a (maximal) interval
of red phases. In our example, for intersection n2 and its incoming
edge (n1, n2) red phase intervals of length 5 may be defined by

tl plan red(n1, n2, 1, 5). tl plan red(n1, n2, 11, 15).

thus implying that between 6 and 10 the signal phase is green.

Problem Encoding (PG). The program PG is generic and changes
only if parameters must be adjusted. We describe the “guess and
check” encoding for SPP configurations by strategy S2, along with
the encoding of the dynamic part of the mesoscopic flow model.

We start with a non-deterministic rule that generates all possible
SPP configurations, which according to S2 are the intervals c =
[cn, cp] for shortening/lengthening a red signal phase on an incoming
lane. The following example illustrates this for c = [−1, 1], where an
incoming lane is given as tuple (X,Y ):

{change red(X,Y, –1..1, –1..1)}=1← tl plan red(X,Y, , ).

Note that c is used twice in the rule since the beginning and the
end of a SP can be shortened/lengthened. The rule head is an ASP-
specific encoding for non-determinism, stating that we generate for
an edge (X,Y ) stored by tl plan red(X,Y, , ) (say e.g. (n2, n3)
in our example) all possible combinations (c1, c2) from {−1, 0, 1}×
{−1, 0, 1}. As some of the above generated SPP configurations are
invalid, we introduce rules that enforce hard (lane crossing) constraints
defined in RC . Incoming lanes are defined as (X, J) and (Y, J) for
intersections J , resulting in the following constraint:

← conflict tl(J,X, Y ), time(T ),
not tl calc red(X, J, T ), not tl calc red(Y, J, T ).

In the above constraints, the predicate tl calc red(X, J, T) is used
to materialize the effect of change red on the SPP as follows:

t calc red(X, J, T )← tl plan red(X, J, T1, T2), time(T ),
change red(X, J, V1, V2), T ≥ (T1 + V1), T ≤ (T2 + V2).

Next, we describe the main rules for the traffic flow calculation. We
use a term on(x, y) expressing that data item x is at node y. First, the
predicate move(X,Z,D, T ) is used to generate the next move of data
times taking the SPP into account, where X is a data item, Z a newly
assigned node, D the flow direction, and T the current time point:

move(X,Z,D, T )← pos(on(X,Z), D, T−1), link(Y,Z,D),
not tl calc red(Y,Z, T ), time(T ).

Second, the predicate pos(on(X,Y ), D, T ) represents the state after
the data item D was moved (first rule) or stays in place (second rule),
where on(X,Y ) links the data item to the new or same position:

pos(on(X,Y ), D, T )← move(X,Y,D, T ), T ≤ steps.

pos(on(X,Z), D, T )← pos(on(X,Z), D, T−1),
not moved(X,D, T ), T ≤ steps.

Third, the predicate load(on(X,Z), V, T ) encodes the flow model
functions flnk, fins, and ffr1, The defining rules use external func-
tions as provided by more advanced ASP solvers. Such functions
(prefixed with @) allow one to use PYTHON code, which we exploit
to implement the more complex functions of the flow model. Each
flow model function is represented by a single rule with load in the
head, where the function @fIns implements fins:

load(on(X,Z),@fIns(V, Y, Z, T,maxflow,maxcap), T )
← moved(X,D, T ), load(on(X,Y ), V, T−1),

link(Y,Z,D), pos(on(X,Y ), D, T−1),
link ratio(Y,Z,D, ), T ≤ steps.

Due to space constraints, we omit the rules for flnk and ffr1 (replace
@fIns with the respective implementation).
Optimizations. Optimizations based on the indicators QNrV and
QSPS can be realized straight in ASP using aggregation, maxi-
mization directives and cut-offs via hard constraints. The predicates
sum traffic and sum tl red are used for aggregation as follows:

sum traffic(M)←M = #sum

{
V,X : load end(X,V, T ),

T==steps

}
.

Note that load end is represented by a rule for tracking all data items
that have left the road network. The aggregation rule for sum tl red

is similar, where the maximization and cut-off for the above aggrega-
tions are defined as follows:

#maximize M : sum traffic(M).

← sum tl red(M),M ≥ threshold red.

The first statements effects ordered enumeration of the answer sets by
increasing value of M , while the hard constraint drops all answer sets
where M is below threshold threshold red. The rules for maximiz-
ing sum tl red and restricting sum traffic are very similar.

5 Experiments and Results
We conducted two experiments with the aim of evaluating (a) the qual-
ity of our ASP-encoded flow model and (b) the suitability of strategy
S2 for improving existing signal plans. We highlight that we frequently
found the best configuration of a signal plan shortening/lengthening
(for a fixed interval), which could be applied to optimize the traffic
flow based on specific traffic demand.

CLINGO 5.3.0 was used to evaluate the ASP programs, which
is a state-of-the art ASP system [11]. The experimental setup, ASP
encodings, logs, results (including further ones) are available at the
webpage http://www.kr.tuwien.ac.at/research/projects/loctrafflog/pais2020.

5.1 Experimental Setup
The models for the experiments must be based on and compared to a
microscopic traffic simulation such as SUMO (https://sumo.dlr.de/index.
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html), which is the de-facto standard open source tool. We extracted
from SUMO the configuration files that describe the road network,
the traffic light programs, as well as traffic demand modelling, and
generated the ASP data encoding using custom PYTHON scripts.

#v t sd tl #rr #rs #rt

d1 42 115 6 19 0 6.605 56.14
d2 126 250 6 42 10 4.407 74.49
d3 210 360 6 60 19 3.595 92.43

Table 1: Scenarios statistics

Benchmark Data. The benchmark data itself is based on the example
shown in Figure 1b, which includes two intersection connecting three
roads with two lanes on each road. The base signal plan is shown
in Figure 3; it equally splits the traffic between two crossing roads.
Based on the network, we created three simulation scenarios, where
we defined traffic demand models capturing light (d1), medium (d2),
and heavy traffic (d3).The statistics on the scenarios is summarized
in Table 1, where #v is the overall vehicle count, t the SUMO
simulation length, sd the interval length, tl the flow model length,
#rr the NrV running, #rs the mean speed (in m/s), and #rt the
mean travelling time (in s). Note that #rs is the main indicator, which
was selected to compare the results.

Calibration. SUMO was also used in the calibration process,
whereby we created the mentioned equi-distant segmentation of the
road network. An important parameter for the calibration is sd, which
defines how many simulation steps are in a time point, e.g., if sd = 2,
two time points are four simulation steps. The interval length influ-
ences the estimate for the bottleneck capacity of lV and load capacity
of lE . The calibration also includes a validation step, where the NrV
throughput of the mesoscopic flow model is compared to SUMO sim-
ulation runs, to guarantee that the mesoscopic model approximates
the microscopic model with a deviation of < 10%.

5.2 Results
We conducted our experiments on a Mac OS X 10.14.4 system with
an Intel Core i7 2.9GHz, 8GB of RAM, and a 250GB SSD. The best
results of three restarts were taken for each experiment. The given
traffic demand model and the deterministic flow model encoding did
not yield any deviation; however the evaluation with CLINGO using
solving options such as parallel solving with competition-based search
can lead to different optima (of similar quality) in runs [10].

Experiment 1. The first experiment serves to calculate the optima
based on strategy S2 by (1) generating all possible candidates that
satisfy the hard constraints RC , (2) simulating each candidate using
SUMO, and (3) searching all simulation results and choosing the
candidate with highest mean speed #rs. The results are shown in
Table 2, where the columns are as before, c is the interval of SP
changes, dev(%) is the deviation of #rs regarding the base plan, and
m is the count of generated candidates. Note that all the presented
results are the best possible improvements of the base signal plan in
regard to the constraints RC .

Experiment 2. The second experiment serves to run the combined
strategy S2 and the evaluation of the mesoscopic flow model to calcu-
late the quality indicators QNrV and QSPS . Based on the indicators,
we evaluated the optimization methods of (a) maximizing QNrV with
cut-off QSPS , and (b) maximizing QNrV and QSPS . The results are
shown in Table 3 where the columns are as in Table 2 except that
dev(%) is the deviation of #rs regarding Experiment 1.

c #rr #rs #rt dev(%) #m

d1 [−1, 1] 0 7.026 56.00 6.37 682

[−2, 2] 1 7.134 56.00 8.01 3 521

[−3, 3] 0 7.188 54.93 8.83 13 782

[−4, 4] 1 7.227 52.10 9.42 66 737

d2 [−1, 1] 0 5.346 71.52 21.30 641

[−2, 2] 0 5.557 70.26 26.09 1 128

[−3, 3] 0 5.938 67.60 34.73 10 003

[−4, 4] 0 5.962 66.02 35.28 36 015

d3 [−1, 1] 0 4.697 83.50 30.65 900

[−2, 2] 0 4.810 88.40 33.81 4 763

[−3, 3] 0 5.169 82.16 43.79 10 210

[−4, 4] 0 5.501 77.70 53.01 68 527

Table 2: Results of Experiment 1

c (a) #rs #rt dev(%) (b) #rs #rt dev(%)

d1 [−1, 1] 6.405 54.93 −8.83 6.548 56.83 −6.80

[−2, 2] 6.539 53.82 −8.35 6.548 56.83 −8.22

[−3, 3] 6.991 53.88 −2.75 6.466 54.95 −10.05

[−4, 4] 6.751 56.38 −6.59 6.466 54.95 −10.53

d2 [−1, 1] 4.544 80.23 −15.01 4.860 83.92 −9.09

[−2, 2] 5.027 68.76 −9.55 5.019 70.97 −9.68

[−3, 3] 5.714 68.16 −3.76 5.372 73.94 −9.54

[−4, 4] 5.962 66.02 0.00 5.962 66.02 0.00

d3 [−1, 1] 4.697 83.5 0.00 4.697 83.5 0.00

[−2, 2] 4.780 86.67 −0.63 4.653 92.22 −3.28

[−3, 3] 4.689 87.39 −9.29 4.625 93.18 −10.52

[−4, 4] 4.843 81.34 −11.95 4.349 91.59 −20.94

Table 3: Results of Experiment 2

Discussion Experiment 1 indicates that calculating optima based
on strategy S2 improves an already suitable base plan by 6.37% to
53.01%. It is particularly satisfactory that the signal plan adjustments
are most effective with the heavy traffic demand model d3. However,
the exhaustive search with millions of possible candidates needs
an evaluation time starting from below 2min with d1 and [−1, 1]
changes, ending at an upper limit of 180min with d3 and [−4, 4].

If one aims at computing optimal candidates online, combining
strategy S2 with the mesoscopic flow model is crucial, as it allows for
the tight integration of the quality evaluation (of a candidate) using
the mesoscopic flow model and to optimize the candidate generation
iteratively. In Experiment 2, we evaluated the performance of this
integrated approach based on the methods (a) maximize QNrV , cut-
off QSPS and (b) maximize QNrV , maximize QSPS . The findings
are encouraging, as we could find in two cases the same optimum as in
Experiment 1; this is surprising, as the flow model is less accurate than
a simulation run in SUMO. Otherwise we only measured a deviation
between 0.63% and 11.95% (with an outlier at 15.01%). The use of
CLINGO 5.3.0’s “enumerate models” functionality was of importance
for these experiments; but after a timeout of 5min we stopped the
evaluation and selected the best model as the result [10].

6 Related Work and Conclusion
The potential of AI techniques for traffic management was recognized
in [21], stating that for instance Artificial Neural Networks, Genetic
Algorithms, or Fuzzy Logic Models could be applied. In the field
of ASP, we are not aware of other work, with the exception of [3]
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where the authors applied ASP to detect inconsistencies in traffic
regulations in a static context. In AI-based planning, Vallati et al.’s
work [19, 26, 20] is foremost – they extended the PDDL+ planning
engine UPMurphi [22] with a traffic-control heuristic using a token-
based approach and a PDDL+ encoding that is (as for now) closest to
our approach. Linking the PDDL+ encoding with Constraint ASP as
in [1] could be interesting. However, we decided to choose a different
encoding based on a mesoscopic flow model and three solving and
optimization strategies tailored for native and efficient evaluation with
native ASP engines.

This work is sparked by the lack of symbolic AI techniques in the
field of traffic control systems (TCS) used for traffic optimizations,
which allows one (a) to add and change on-demand rules to implement
new optimizations strategies, and (b) to replicate microscopic traffic
simulation tools for on-the-fly runs to test a strategy. We also intro-
duced a novel ASP-based approach for calculating signal phase plans
(SPPs) as used in TCS, including a mesoscopic traffic flow model to
calculate the quality of new SPPs, and three strategies for generating
new SPPs. We moreover provided an ASP encoding of the traffic flow
model and of one strategy (called signal plan adjustments), which we
then used to conduct experiments on a benchmark road network. The
results indicate (a) the power of signal plan adjustments as effective
means to improve traffic flow under heavy network load, and (b) that
the mesoscopic flow model makes online evaluation realistic without
losing too much accuracy regarding a microscopic simulation.
Future work. Our ongoing and future research is directed towards
increasing the expressiveness of the mesoscopic flow model and to
an in-depth study of the template-based strategy. In a broader scope,
future work should lead to a more systematic investigation by taking
other knowledge representation (KR) formalisms into account.

A model extension would be desirable that propagates the NrV
data items to down-flow edges, if a level of saturation is reached
on an edge. This would allow us to simulate more complex traffic
patterns and lead a to more expressive flow model. Furthermore, the
strategy S3 introduces templates in combination with signal plan
adjustments. This is currently not feasible, as only the original plans
for a network are available; learning new templates would allow us to
have “custom” templates for each network. To underline the feasibility
of our approach, we aim to conduct a larger experimental evaluation
using more complex traffic networks with more diverse flows.

Finally, the proposed modelling and encoding could be transferred
to other KR formalisms, which could lead to a more systematic inves-
tigation of the traffic flow optimization problem in a KR setting. Event
Calculus [16] and Situation Calculus [23] could be suitable candidates,
in particular Hybrid Temporal Situation Calculus is an appealing ap-
proach, which was already applied to Signal Plan Adjustments [2]
using temporal functional fluents.
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