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Abstract. In order to improve Remaining Useful Life (RUL) pre-
diction accuracy for rolling bearings under defect progressing, ro-
bustness for individual difference and fluctuation of vibration fea-
tures are challenging issues. In this research, we propose a novel
RUL prediction method that uses a hierarchical Bayesian method to
consider the individual difference of RUL, and uses an intermediate
variable indicating the defect condition instead of predicting RUL
directly from vibration features. The proposed method can perform
a monotonous RUL prediction curve and improved prediction accu-
racy especially for early stage of defect progression.

1 INTRODUCTION
Rolling bearings are one of the essential mechanical elements in ro-
tating machinery. In general, the Remaining Useful Life (RUL) of a
rolling bearing is regarded as the operating time until some kind of
defect occurs on the raceway surface. However, in situations where it
is not easy to replace the rolling bearing or where maintenance costs
are high, the bearing may be used even after defects have occurred.
There is a need for a method to estimate the RUL under progressive
defects.

There are two main approaches for predicting RUL of rolling bear-
ings; Time Based Maintenance (TBM) and Condition Based Mainte-
nance (CBM). TBM is based on the concept of performing mainte-
nance on a time basis. For TBM, L10 life is generally used for RUL
prediction of rolling bearings[5]. It is known that the RUL of rolling
bearings varies widely[9]. Considering this variation, the L10 life is
calculated based on Weibull distribution and it is defined as the total
rotation cycles or total operating time that 10 % of the rolling bear-
ings were damaged when many rolling bearings (same type) were op-
erated under the same conditions. TBM may require rolling bearings
to be replaced that are perfectly functional, or serious defects may
occur before the periodic inspection, increasing the cost of mainte-
nance.

On the other hand, CBM has recently attracted attention as a diag-
nostic method for rolling bearings. Traditional CBM for rolling bear-
ings calculates the RUL by extracting the degradation index from
the features of the vibration data and estimates the remaining op-
erating time until the trend of the degradation index exceeds the
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threshold[10]. In recent years, there are several research reports on
CBM using vibration signals, foreign matter in the lubricant, as well
as temperature and acoustic emissions for rolling bearings[6],[7].
Most of these methods target early stage defect progression. For a
CBM under defect progression, two methods for estimating the de-
fect state during operation have been proposed, by expressing the
relationship between vibration and flaking surface area as a regres-
sion equation[8], and from vibration signals using a Self-Organizing
Map[13]. In both cases, there is no mention of RUL based on the
useful limit under defect progression.

In this research, we propose a RUL curve prediction method based
on Hierarchical Bayesian Regression (HBR)[4] for rolling bearings
under defect progression including late stage. The characteristics and
advantages of this method are;

• By using a Bayesian Regression (BR) model that inputs circum-
ferential defect length of the rolling bearing (defect size, ds) and
outputs an RUL curve, a monotonic decrease in the RUL predic-
tion is guaranteed.

• In order to predict RUL for a rolling bearing sample whose
RUL are not known, the inputs to the BR model are estimated
from vibration acceleration features using a regression model (pre-
regression).

• Considering the individual differences of rolling bearings by hier-
archizing the main-regression (HBR) model, the RUL prediction
accuracy is improved especially for early stages of defect progres-
sion.

The rest of this paper is organized as follows. Section 2 introduces
the background of this research. Section 3 describes related research.
The details of the proposed RUL prediction method is presented in
Section 4. Experimental conditions, evaluation methods and the re-
sults are described in Section 5. Future work and conclusions are in
Sections 6 and 7 respectively.

2 PROBLEMS OF PREDICTING RUL UNDER
DEFECT PROGRESSION

2.1 Defect Progression and Vibration Features

Defects (flaking) often occur on the raceway surface of the fixed
ring (in this case, inner ring) of rolling bearings. If operation is con-
tinued after the initial defect occurs on the raceway surface, the de-
fect expands in axial and circumferential directions. This causes vi-
bration acceleration to increase as the defect progresses. In addition,
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Figure 1: Relationship between operating time and vibration feature, defect size under damage progressing.

Figure 2: Overview of rolling bearing and defect shape on raceway surface of inner ring.

Figure 3: Variation of RUL among samples.

the upward trend of vibration varies depending on the defect state.
Figure 1 shows the relationship between the operating time and Root-
Mean-Square (RMS) value of vibration acceleration. It also shows
the relationship between the operating time and defect length in the
axial and circumferential directions. Figure 1 also shows the RUL
from the measurement time to the operational limit. The operational
limit is assumed to be the time when the defect size reaches 12 mm.
Figure 2 shows an overview of the rolling bearing and the defect
shape on the raceway of the inner ring. The right two images in
Fig. 2 indicate the condition of defect progression at points 1⃝ and
2⃝ in Fig. 1. The RMS value is generally used for rolling bearing

diagnostics[10], but it varies greatly around the end of defect pro-
gression, and it is difficult to accurately determine the condition of
rolling bearings. On the other hand, the changes in axial and circum-
ferential defect length is a suitable index for predicting the RUL be-
cause it shows a monotonous change with respect to operating time.
However, it is difficult to measure the defect size while operating be-

cause it is necessary to stop or disassemble the equipment to measure
them.

2.2 Variation of rolling bearing RUL
The RUL until a defect occurs has variation among the rolling bear-
ings in general. We need to consider the same problem for predict-
ing RUL under defect progression. Figure 3 shows the relationship
between the defect size and RUL until the defect size reaches the
specified length for 33 bearing samples. Despite that the multiple
rolling bearings shown in Fig. 3 are all measured under the same op-
erating conditions, the variation in RUL are larger than the average
RUL. Therefore, an RUL prediction method considering variation is
important for improving the prediction accuracy.

3 RELATED WORK
In recent years, diagnostic methods using machine learning have at-
tracted attention for predicting RUL of rolling bearings. For exam-
ple, methods based on deep learning, Deutsch et al. used deep belief
networks and feed-forward networks to predict RUL considering the
error of the predict value for each bearing[1]. Guo et al. used recur-
rent neural network based health indicators for predicting the RUL of
rolling bearings[3]. On the other hand, as methods based on Bayesian
estimation, Gebraeel et al. and Zhou et al. predict the RUL using a
BR models[2],[14]. In addition, Mishra et al. predicted the RUL con-
sidering the variation of rolling bearings by using HBR[12]. How-
ever, references [1], [2] and [14] are intended to cover a monotonic
range of feature fluctuation in the relatively early stages of defects,
and do not describe the RUL prediction accuracy under defect pro-
gression where the fluctuations of the features are unstable. Refer-
ences [1] and [3] do not describe variation of RUL of rolling bear-
ings. Reference [12] predicted the RUL of rolling bearings that have
been measured from the early to late stages of defect progression,
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Figure 4: RUL prediction flow.

but does not describe the prediction of RUL for new rolling bearings.
In the operation of condition monitoring systems in the field, it is
necessary to predict the RUL of new rolling bearings in considering
variation from measurement data at the initial stage. In this paper, the
proposed method addresses this issue.

4 PROPOSED METHOD

4.1 Flow of the Proposed Method

In this research, the influence of fluctuations in vibration accelera-
tion of rolling bearings under defect progression is suppressed by
using defect size as an intermediate variable. In addition, by using
HBR as a prediction method, we predict the RUL considering the
variation of rolling bearings, and express the RUL curve based on a
monotonous regression model. The regression model of the proposed
method consists of common parameters, individual parameters and
uncertainty parameters. Common parameters indicate invariant char-
acteristics for all bearing samples, individual parameters indicate in-
dividual characteristics for each bearing sample, and uncertainty pa-
rameters indicate uncertainty of prediction result of RUL. Individual
parameters have hyperparameters common for all bearing samples.
Each parameter above is expressed as a probability distribution, and
as a result, the RUL curve also has a probability distribution.

Figure 4 shows the outline of the RUL prediction flow of the pro-
posed method. We assume that the training bearing samples contain
data of vibration acceleration, defect size, and RUL at all measure-
ment times. While, we assume that the test bearing sample has only
vibration acceleration data until the measurement time. In the train-
ing phase, the main-regression model (HBR) uses the measured value
of the defect size (dsreal) and the RUL (yreal) of the training bearing
samples to determine the common parameters and hyperparameter of
the individual parameter by the Monte Calro Markov Chain (MCMC)
algorithm. While in the test phase, the main-regression model uses
reference values of the defect size (dsref ) and the RUL (yref ) un-
til the measurement time, and the (hyper)parameters obtained above
to estimate the individual parameter and uncertainty parameters for
the test sample by the MCMC algorithm. Here, these reference val-
ues are predicted from the feature vector of vibration acceleration
using the pre-regression. Once we estimate the individual parame-
ter and uncertainty parameters for the test sample, we use them to

determine the RUL curve and its probability distribution. RUL ref-
erence values (result of pre-regression model) are snapshots and do
not consider the continuity of the defect progression trend, so we aim
to improve the prediction accuracy by guaranteeing monotonicity of
the RUL decrease with the regression model of HBR.

4.2 The Hierarchical Bayesian Regression Model
Equations (1) to (8) show the RUL regression equations and the prob-
ability distributions given to each parameter of the regression equa-
tion in the proposed HBR model. Level 1 below shows the relation-
ship between the defect size (ds) and the RUL (yi) of the ith bear-
ing sample. Level 2 shows the probability distributions of the com-
mon parameters α and β, individual parameter δi for the ith bearing
sample, and parameters σy and νy which indicate uncertainty of the
RUL. σy and νy are the scale and degrees of freedom of the Stu-
dent’s t-distribution, respectively. σδ is a hyperparameter of δi. And
Level 3 shows the hyperprior distribution of σδ . δi and σδ are log-
normal distributions since they do not take negative values. α, β are
normal distributions. Student’s t-distribution parameters σy , νy are
half-Cauchy distribution and exponential distribution, respectively.
Equations (3) to (8) indicate prior distributions of each parameter,
and we estimate posterior distribution of the parameters by MCMC
algorithm in the training or testing phase respectively.

The invariant characteristics for all bearing samples are expressed
by α and β, and the individual characteristic for each bearing sample
is expressed by δi. In addition, by giving σδ as a hyperparameter
of δi and using HBR, the individual difference in the RUL can be
expressed by one regression model.
1st Level

yi ∼ StudentT(µi ,σy ,νy) (1)

µi = δi(α+
β

ds
) (2)

2nd Level

α ∼ Normal(0, 100) (3)

β ∼ Normal(0, 100) (4)

σy ∼ HalfCauchy(5) (5)

νy ∼ Exponential(0.03) (6)

δi ∼ Lognormal(0,σδ) (7)
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3rd Level

σδ ∼ Lognormal(0, 100) (8)

The steps for predicting RUL curve are as follows;

Step 1: (Training phase) Training of the pre-regression model
Pre-regression model 1 fpre1: v 7→ ds is trained by using the fea-
ture vector (v) of the vibration acceleration (X) of the training
bearing samples as input and the defect size ds of the training
bearing samples as output. Pre-regression model 2 fpre2: v 7→ y
is trained by using v of the training bearing samples as input and
the RUL (yreal) of the training bearing samples as output. The hy-
perparameters of pre-regression models 1 and 2 were chosen.

Step 2: (Training phase) Training of the main-regression model
by using validation data
Using the defect size (dsreal) and the RUL (yreal) of the train-
ing bearing samples as input, the main-regression-model is trained
and the posterior distribution of the common parameters and the
hyperparameter of main-regression model is calculated by using
Eqs. (1) to (8).

Step 3: (Test phase) Calculating dsref and yref using the pre-
regression model
Using the hyperparameters selected in Step 1 and v of the test
bearing sample, the reference value of the defect size (dsref ) and
the RUL (yref ) is calculated by the pre-regression models 1 and
2.

Step 4: (Test phase) Calculating the posterior distribution of
ypred using the main-regression model
The individual parameter and the uncertainty parameters of the
test sample are calculated using the posterior distribution of
the common parameters and the hyperparameter of the main-
regression model calculated in Step 2 and dsref and yref cal-
culated in Step 3. Then, the posterior distribution of the RUL
curve (ypred) is estimated by using all parameters of the main-
regression model.

5 EXPERIMENT AND RESULT
5.1 Experimental Conditions
Figure 5 shows a schematic diagram of the experimental equipment
used to evaluate the RUL prediction accuracy, and Table 1 shows
the main experimental conditions. Cylindrical roller bearings (Type:
NU224) were used in the experiment, and the defect was considered
to be the flaking on the raceway, which is the most common type of
defect of rolling bearings.

Vibration acceleration (vertical and horizontal directions) and de-
fect size were measured every 20 minutes on average for 33 bear-
ing samples. Data from the bearing samples were measured from the
normal condition until the defect progressed to the limit of opera-
tion, and the data after defect occurrence was used for evaluation.
The time required for the defect to reach a specific size was taken as
the reference point for RUL. The RUL was then determined by sub-
tracting the operating time for each measurement from the reference.
Examples of measurement data and defect conditions were shown in
Fig. 1 to Fig. 3 in Section 2.

One measurement data of vibration acceleration of one di-
rection X(M )=[x1 , x2 , · · · , xj , · · · , xN ], M∈{Vertical, Horizontal}

Figure 5: Test equipment.

was measured at a sampling frequency of 50 kHz and a sampling
time of 20 seconds. Here, index j indicates the time series order, and
xj indicates the instantaneous value of vibration acceleration ampli-
tude at index j.

Table 1: Operating condition.

Bearing Cylindrical Roller Bearing (Type: NU224)
Rotation Speed 500 min−1

Radial Load 90 kN
Measurement Vibration Acceleration

( Vertical and Horizontal )
Number of Bearing Samples 33

Snapshot for each Sample 51 - 129

5.2 Feature Vector
From data measured in Section 5.1, we obtain the feature vector
by band-pass filtering and calculating statistical features. For each
measurement data X(M ), amplitude data obtained by filtering in
each frequency band (shown in Table 2) was used as time domain
data X(M ,TIME). Frequency domain amplitude data obtained by per-
forming envelope[11] and FFT processing on the time domain data
X(M ,TIME) was used as frequency domain data X(M ,FREQ). In ad-
dition, the amplitude data obtained by performing FFT processing
again on the frequency domain data X(M ,FREQ) was used as que-
frency domain data X(M ,CEPS). From X(M ,D), D∈{TIME, SPEC,
CEPS}, we calculated RMS, Max value (MAX), Crest Factor (CF),
Kurtosis (KS), Skewness (SKN), which are often used for diagnostics
of rolling bearings[3].

RMS, MAX, CF, KS, SKN are calculated as follows;

RMS(M,D) =

√√√√ 1

n

n∑
k=1

(X
(M,D)
k )2 (9)

MAX(M,D) = max
1≤k≤n

X
(M,D)
k (10)

CF (M,D) = MAX (M ,D)/RMS (M ,D) (11)

KS(M,D) =
1

n

n∑
k=1

(X
(M,D)
k −X

(M,D)
)4

(σ(M,D))4
(12)

SKN (M,D) =
1

n

n∑
k=1

(X
(M,D)
k −X

(M,D)
)3

(σ(M,D))3
(13)
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Figure 6: Stages for evaluating accuracy.

Here, M indicates the sensor measurement direction, D indicates
domains, X(M,D)

k means index k of X(M,D), X
(M,D)

means aver-
age value of X(M,D), σ(M ,D) means standard deviation of X(M,D).
In addition to these features, we also calculated eRMS. eRMS is de-
fined as RMS of enveloped signal of X(M,D). Therefore, the feature
vector consists of 252 features considering domains (time, frequency,
quefrency), filters (6 types of band-pass filter and w/o filter), sensor
directions (vertical, horizontal), and statistics (6 types).

Table 2: Kind of band-pass filter.

Filter Frequency Range(Hz)
Raw None
Low1 20-200
Low2 20-1000
Mid1 200-2000
Mid2 1000-5000
High1 2000-20000
High2 5000-20000

5.3 Evaluation Method
The coefficient of determination (R2) was used as an evaluation in-
dex of prediction accuracy. R2 was calculated for each bearing sam-
ple, and average and variation of R2 for all bearing samples were
evaluated by leave-one (bearing)-out cross-validation. So we can as-
sume that higher value and less variation of R2, the better prediction
result. Figure 6 shows a schematic diagram of the evaluation stage of
prediction accuracy. The evaluation of defect progression is divided
into entire stage (SAll), early stage (SEarly), and late stage (SLate).
The early and late stages of defect progression were defined based
on the change point of the defect progression speed in each bearing
sample.

5.4 Preliminary experiment: Estimating dsref and
yref

Figure 7 shows R2 of dsref by various regression methods of Kernel
Ridge (KR), Random Forest (RF), Support Vector Regression (SVR),
Neural Network consists of four hidden layers (DNN) when using
feature vectors as input. And Figure 8 shows R2 of yref by same
methods as Fig. 7. Hyperparameters for each method were selected
with the smallest mean-square-error of prediction result by five-fold
cross-validation in training. In Fig. 7, R2 at the early stage of RF and
SVR are higher than KR and DNN. Average of R2 at the late stage

Figure 7: Prediction accuracy for ds(pre-regression model 1 at flow
A of Fig. 4).

Figure 8: Prediction accuracy for RUL(pre-regression model 2 at flow
A of Fig. 4).

of SVR is higher than that of RF, but the variation of SVR is larger
than that of RF. In Fig. 8, each method shows large variations in R2

at the early stage, and R2 at the late stage was less than 0 in almost
all methods. Since only R2 average of RF exceeded 0 at late stage of
RUL prediction, we adopted RF for the pre-regression model of RUL
for the proposed method. We also adopted RF for the pre-regression
model of defect size in the following section because we obtained the
most stable result when using RF for pre-regression models of both
defect size and RUL in the proposed method.

5.5 Evaluation of Proposed Method

5.5.1 Relationship between Defect Progress and RUL
Curve

Figure 9 shows the relationship between defect progression and the
RUL curve predicted by the proposed method. In Fig. 9, the blue plot
indicates the measured value and the red plot indicates the true value.
Black line indicates the mean curve of the prediction result, dark gray
and light gray areas are 50 % and 95 % credible intervals. As the mea-
sured data increased depending on the defect progression of the test
sample, the mean curve approaches the true value, and the credible
interval becomes narrow. By using HBR, the RUL can be expressed
as a probability distribution, and as the measurement proceeds, the
prediction accuracy of the RUL can be increased along with a reduc-
tion of interval.

5.5.2 Distribution of individual parameter δi

Figure 10 shows an example of the estimated results of the distri-
bution of the individual parameters δi of each bearing sample using
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Figure 9: Relation between damage progression and RUL posterior distribution.
Blue plot is the measured value and red plot is the true value.
Black line is the mean curve of prediction result, dark gray and light gray areas are 50% and
95% credible intervals.

Figure 10: Distribution (KDE plot) of δi.

Figure 11: Comparison of regression result.

Kernel Density Estimation (KDE). It can be confirmed that the dif-
ference in the RUL of each bearing is expressed as a difference of
the distribution. In addition, the mode value of each distribution has
a maximum difference of about 3 times, which is almost same as the
difference of RUL for each bearing in Fig. 3.

5.5.3 Prediction Accuracy of Proposed Method

Figure 11 shows the comparison of RUL predictions between the pro-
posed method and results of pre-regression with RF. The proposed
method can obtain monotonous prediction results and can reduce the
possibility of misdiagnoses especially in the early stage (green cir-
cled area in Fig. 11).

Figure 12 shows a box plot of the R2 score of the proposed
method. Table 3 shows the average, median, min, max and standard
deviation of R2. The result of the proposed method was compared
with Single Layer BR instead of HBR. The result of RF (same as
Fig. 8, result of flow A in Fig. 4) is also compared. In Table 3, the

Figure 12: Prediction accuracy for RUL (R2 score).

Table 3: R2 score of each method.

RF BR Proposed
SEarly 0.300 -0.129 0.436

Average SLate 0.122 0.312 0.381
SAll 0.739 0.610 0.800

SEarly 0.650 0.755 0.800
Median SLate 0.393 0.465 0.539

SAll 0.866 0.886 0.912
SEarly -5.618 -11.582 -3.852

Min SLate -3.385 -0.692 -0.467
SAll -1.089 -2.957 -0.500

SEarly 0.910 0.979 0.966
Max SLate 0.789 0.875 0.960

SAll 0.959 0.989 0.983
SEarly 1.174 2.289 0.934

Standard Deviation SLate 0.917 0.473 0.431
SAll 0.373 0.724 0.293

highest score for average, median, min, max and the lowest score
for standard deviation of each stage is indicated in bold. In BR, we
use almost the same regression model as the HBR described in sec-
tion 4.1. The difference of BR instead of HBR is that we assume the
common parameter (δ), which has only one distribution for all bear-
ing samples instead of the individual parameter (δi), and we do not
assume hyperprior distribution for BR model. By using the proposed
method, the prediction accuracy in SAll and SEarly was increased,
and the prediction accuracy in the SLate was improved compared to
RF. In addition, because standard deviation of the proposed method
was decreased in all stages compared to BR, the proposed method
can increase the prediction accuracy over different bearing samples
by hierarchizing BR model. However, the variation of prediction ac-
curacy of R2 at the SEarly is still large and needs to be improved.
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(a) RF (b) BR (c) Proposed

Figure 13: Correlation between predicted value and true value of RUL.

Figures 13 (a) to Figure 13 (c) show examples of the comparison
of the predicted value and the true value of RUL by RF, BR, and
the proposed method for the same bearing sample. The result of BR
has less variation than the result of RF, but the predicted values are
larger than the true value for the entire stage, because the individual
difference cannot be considered in BR method. In comparison, the
proposed method reduces the difference between predicted value and
true value by considering individual differences, and as a result, R2

of the proposed method improved.

6 FUTURE WORK
In this study, by using HBR as a RUL prediction method and using
defect size as an intermediate variable, the prediction accuracy for
early stage defect progression of the proposed method was improved.
However, for some bearing samples, variation of prediction accuracy
in the early stage is still large in the proposed method, which may
cause misdiagnoses. This is because the reference values of the de-
fect size and the RUL are used as input for HBR, and it is assumed
that the estimation accuracy of these reference values is poor. We are
currently taking countermeasures.

7 CONCLUSION
For predicting the RUL of rolling bearings under defect progression,
we tried to improve prediction accuracy by introducing Hierarchical
Bayesian Regression and using defect size as an intermediate vari-
able. The findings obtained in this study are shown below.

• By using Bayesian method as a regression method, the RUL can
be evaluated with credible intervals, and prediction accuracy can
be increased with each measurement.

• The accuracy of the proposed method is improved especially for
the early stage of defect progression in some cases.

• The proposed method can obtain monotonous prediction results
and reduce the possibility of misdiagnoses especially in the early
stage.

• Because variation of prediction accuracy in the early stage of de-
fect progression is still large in the proposed method, it is neces-
sary to improve in the future.
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