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Abstract. AI safety often analyses a risk or safety issue, such as
interruptibility, under a particular AI paradigm, such as reinforce-
ment learning. But what is an AI paradigm and how does it affect the
understanding and implications of the safety issue? Is AI safety re-
search covering the most representative paradigms and the right com-
binations of paradigms with safety issues? Will current research di-
rections in AI safety be able to anticipate more capable and powerful
systems yet to come? In this paper we analyse these questions, intro-
ducing a distinction between two types of paradigms in AI: artefacts
and techniques. We then use experimental data of research and media
documents from AI Topics, an official publication of the AAAI, to
examine how safety research is distributed across artefacts and tech-
niques. We observe that AI safety research is not sufficiently antici-
patory, and is heavily weighted towards certain research paradigms.
We identify a need for AI safety to be more explicit about the arte-
facts and techniques for which a particular issue may be applicable,
in order to identify gaps and cover a broader range of issues.

1 INTRODUCTION

As in any other scientific or engineering discipline, many AI re-
searchers work within a well-established paradigm, with some
standard objects of study, problems to solve, and associated for-
malisms and terminology. Understanding past, current and future AI
paradigms is an important source of insight for funding agencies,
policymakers, and AI researchers themselves, because it shapes how
we think about what problems AI research is aiming to solve, what
methods are required to solve them, and what the wider implications
of progress might be.

We believe that thinking clearly about AI paradigms is particularly
crucial for AI safety research: an increasingly important area con-
cerned with understanding and preventing possible risks and harmful
impacts in the design and deployment of AI systems. For the pur-
poses of this paper, we define AI safety broadly, to include both risks
from AI systems for which the source of risk is accidental, rang-
ing from unpredictable systems to negligent use, and non-accidental
risks such as those stemming from malicious use or adversarial at-
tacks (which might sometimes also be referred to as AI security
risks.) This includes risks with many different types of consequences:
including human, environmental, and economic consequences. AI
safety is becoming particularly important as AI is increasingly used
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to automate tasks that involve interaction with the world. A charac-
teristic example is AI being used in many components of self-driving
cars such as perception, reasoning and action.

Research in AI safety has typically analysed a specific risk or issue
under a particular existing paradigm, such as interruptibility for rein-
forcement learning agents [33], adversarial attacks on deep learning
systems [43], or fake media produced with GANs [21]. Poor choices
or misinterpretation of current and future paradigms may result in
AI safety research focusing in the wrong places: analysing scenarios
that will not take place in the future, or that will at best manifest in
completely different ways. For example, concerns about adversarial
attacks on current deep learning methods have led to many papers
proposing methods to defend against malicious perturbations, but it
is not clear that these actually relate to plausible security concerns
[16]. Though adversarial examples help us understand how brittle
current deep learning methods can be, the kinds of attacks that some
safety research is concerned with can only arise in contrived interac-
tions, and make strong assumptions about the goal, knowledge, and
action space of the attacker. In contrast, other risks have been ignored
because they are outside of the current paradigm: for instance, at-
tacks which go beyond an “independent” or functional interpretation
of a neural network, and instead use the “information from previous
frames to generate perturbations on later frames” [41].

Thinking about different paradigms is also important for clearly
assessing safety considerations and risks in concrete real-world ap-
plications. For instance, the risks of using AI in vehicles will be per-
ceived differently depending on whether we expect AI to be assisting
or replacing human drivers, whether a self-driving vehicle is consid-
ered as a single autonomous agent, or whether we consider the whole
traffic system as a swarm of interacting agents.

Even as research becomes oriented towards future risks (some
years or even decades away) the different safety issues associated
with different AI paradigms have not been explicitly addressed in
the literature [6, 2, 23, 14]. As AI research is fast evolving and likely
to result in increasingly powerful systems in future, it is crucial for
AI safety to explore issues associated with a broader range of possi-
ble AI paradigms, and to explicitly discuss what assumptions about
paradigms and safety issues are being made in each research paper or
project. This will not only enable the research community to identify
the effects of less-explored paradigms on safety concerns, but could
also increase awareness among AI developers that the paradigms
they work in have consequences for safety, potentially highlighting
approaches that can eliminate or reduce safety risks.

In this paper, we present a structured approach for thinking about
paradigms in AI and use this as the basis for empirical analysis of
how AI safety issues have been explored in the research literature
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so far. We begin by defining what we mean by ‘paradigms’ in AI
more precisely, drawing on literature in the philosophy of science
to distinguish two different types of paradigms in AI: artefacts and
techniques. Drawing on existing research and the expertise of several
AI and AI safety researchers, we outline a preliminary taxonomy of
fourteen different AI techniques and ten different AI artefacts. We
then discuss how these different techniques and artefacts relate to
AI safety issues. We use AAAI’s ‘AI topics’ database to conduct a
grounded empirical analysis of the historical evolution of these dif-
ferent paradigms, and the safety issues associated with them. Our
analysis identifies a number of gaps in AI safety research where cer-
tain combinations of techniques, artefacts and safety issues need to
be addressed. We conclude the paper by discussing implications for
future research in AI safety.

2 DEFINING PARADIGMS IN AI

Before discussing paradigms in AI and how they relate to safety is-
sues, we need a clearer account of what an AI paradigm is.

In the philosophy of science, a ‘paradigm’ is an important con-
cept used to capture how theories, methods, postulates and standards
evolve and change within a scientific discipline [22]. The concept of
a ‘technological paradigm’ plays a similar role but with a somewhat
distinct focus, emphasising how each technological paradigm defines
its own concept of progress, based on making specific technological
and economic trade-offs [12].

In computer science, the term ‘paradigm’ is commonly used to
refer to different types of programming languages with different fea-
tures and assumptions: imperative, logic, functional, object-oriented,
distributed, event-oriented, probabilistic, etc. The theory and prac-
tice of programming languages depends heavily on these paradigms.
Many safety issues in programming and software engineering, and
verification in particular, cannot be addressed —conceptually or
technically— without making paradigms explicit [5, 20, 40, 42]. For
instance, compared to imperative programming languages, declara-
tive languages minimise mutability issues [10] due to the use of im-
mutable data structures, as well as reduce state side-effects [29] by
discouraging the utilisation of variables in favour of more sophisti-
cated constructs (e.g., data pipelines or higher-order functions).

In the context of AI, the concept of ‘paradigms’ has been used in-
formally to refer to different broad families of technical or conceptual
approaches: ‘symbolic’ vs ‘connectionist’, reasoning vs learning, ex-
pert systems vs agents. One way to identify paradigms in a field and
how they have changed over time, suggested in Kuhn’s original for-
mulation, is to look at the approach taken by major (text)books in the
field. Russell and Norvig [36], for example, popularised the ‘agents’
view of AI in the 1990s, and Goodfellow et al. [17] has consolidated
‘deep learning’ as a central approach AI research this decade, going
far beyond one specific technique.

However, there is no clearly agreed-upon definition of what counts
as a paradigm in AI. [9] defined an AI paradigm as “the pair com-
posed by a concept of intelligence and a methodology in which intel-
ligent computer systems are developed and operated”, which led him
to identify three paradigms of AI: behaviourist, agent and artificial
life. More than twenty years later, these do not seem to adequately
reflect the approaches and assumptions within AI research today.

Perhaps this difficulty clearly distinguishing AI paradigms from
mere trends stems at least partly from the ambiguity in the concept
of paradigm itself, a criticism which has been made within the phi-
losophy of science. Masterman identifies three different conceptions
of paradigm in Kuhn’s writings: the metaphysical, the sociological
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Figure 1. Ways of analysing an AI safety issue, combined with an artefact
and/or a technique category. In real systems, techniques underpin the creation
or operations of an artefact, where the real hazards occur. Occasionally, re-
searchers can think of a safe issue in a very abstract way, without committing
to any particular artefact or technique (e.g., value alignment). All relations
(arrows) are many-to-many.

and the artefact/construct [27]. Peine makes a reconstructive effort
to combine the second and the third conceptions, suggesting that a
paradigm can emerge when a subcommunity within a field makes a
commitment to a certain set of techniques [35]. For instance, we can
see this phenomenon in the deep learning community, which made
early commitments before this approach had established a dominant
position within the field. We suggest distinguishing between domi-
nant trends: research commitments to specific techniques, aims, or
assumptions that may be relatively short-lived; and paradigms where
these trends lead to more established, long-term commitments.

These ambiguities in the concept of a paradigm are apparent in
the context of AI, where ‘paradigm’ may be used to distinguish both
different techniques for solving problems in AI (e.g., Monte Carlo
search vs. SAT solver, deep learning vs. genetic algorithm), and to
capture different conceptions of possible types of AI systems (e.g.
expert systems vs. agents). Many technical papers can easily be cate-
gorised by looking at the first formal definitions that appear after the
introduction, which tend to identify the kind of AI system and the
kinds of techniques they use to solve a problem.

We suggest that it may be helpful, in thinking about paradigms in
AI, to distinguish explicitly between these two types of constructs:

• Conceptual Artefacts: broad conceptions of what current and fu-
ture AI systems (will) look like, e.g., autonomous agents, per-
sonal assistants [24], AI extenders [19], conceptions of superin-
telligence [6] and Comprehensive AI Services [13].

• Research Techniques: the research methods, algorithms, theoret-
ical technical results and methodologies involved in the develop-
ment of these current or future systems, such as SAT solvers, deep
learning, reinforcement learning, evolutionary computing, etc.

Artefacts and techniques are important components of a paradigm,
and together (weakly) define a paradigm. AI artefacts and techniques
are often related to each other, insofar as certain techniques will of-
ten be better suited to certain types of artefacts (reinforcement learn-
ing is a technique category that is applicable for agent-like artefacts,
for example). However, distinguishing between artefacts and tech-
niques can help us to think more clearly about associated safety is-
sues. Some safety issues will arise when combining an artefact with
some techniques but not others: for example, when building a clas-
sifier (artefact), interpretability is likely to be a challenge for safety
if using deep neural networks (technique), but less so if using sim-
ple decision trees with conditions that are expressed over the original
attributes. Recognising these differences is important for understand-
ing the scope of safety challenges and what solutions may be needed.

In the case of autonomous vehicles, for example, both tech-
niques and artefacts have changed over time, changing concep-
tions of safety. Early work in the 1980s-1990s, such as the Eureka
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Prometheus Project, emphasised systems for improved vehicle-to-
vehicle communications and driver assistance (e.g. collision avoid-
ance), whereas more recent initiatives emphasise the development
of fully independent self-driving vehicles. These are very differ-
ent AI artefacts, with a more fully autonomous system evoking
much broader safety concerns in general. However, to think more
concretely about how evolving approaches to autonomous vehicles
change safety challenges, it may also be important to look at how
techniques have changed over time. For example, as improvements
in computer vision enable more limited sensors to be replaced by
cameras or radars, we may need to focus specifically on the vulnera-
bilities introduced by current techniques used in machine perception.

Sometimes we may want to broadly assess all possible risks asso-
ciated with a specific AI artefact independently of the technique used
(e.g. issues associated with AI extenders), or those associated with
a technique independently of the artefact (e.g. safety challenges for
deep learning). In other cases, we may want to more narrowly focus
on a specific safety issue associated with a particular artefact (e.g.
interruptability for industrial robots), or a specific issue associated
with a particular technique (e.g. interpretability of neural networks.)
Figure 1 shows these interrelationships: how AI safety issues may be
considered relative to either techniques, artefacts, or both.

3 IDENTIFYING TECHNIQUES AND
ARTEFACTS

We can now begin to explore different ways of categorising AI
paradigms by decomposing them into techniques and artefacts.
While other accounts of ‘AI paradigms’ have been proposed, such as
by the “One Hundred Year Study on Artificial Intelligence” at Stan-
ford University [39], the categories frequently mix techniques with
artefacts and even subfields.

3.1 AI techniques
We develop a preliminary categorisation of AI techniques by build-
ing on the bibliometric analysis of [26] and [32, Tab. 6]. Martı́nez-
Plumed et al. [26] identify nine ‘facets’ for the study of the past and
future of AI, using data on all accepted papers from AAAI/IJCAI
conferences (1997-2017), and AI Topics documents, an archive kept
by AAAI containing news, blog entries, conferences, journals, and
other repositories. Niu et al. [32] identify 30 high-frequency key-
words from 20 relevant journals in AI from 1990 to 2014. Both cap-
ture many keywords and categories which appear to describe AI tech-
niques, and are relatively similar.4

We construct a list of AI techniques, grouped into 14 categories,
based on selecting relevant and representative keywords from these
two analyses. We chose these categories based on three principles:
(1) the techniques are sufficiently general to encompass groups of
approaches in AI that have been recognised by other approaches, (2)
overlapping in the techniques is allowed, as there is a high degree
of hybridisation and combination in AI, and (3) subcategories are
retained for particularly large categories, such as ‘machine learning’5

The list of categories is shown in Table 1.
4 Similar selections of keywords can be found in [30], which focused on

the venue keywords, and performed a cluster analysis on the AAAI2013
conference keyword set, proposing a new series of keywords which were
adapted by AAAI2014; and [15], where the authors focused on views ex-
pressed about topics linked to discussions about AI in the New York Times
over a 30-year period in terms of public concerns as well as optimism.

5 The complete list of exemplars of techniques, artefacts and safety issues,
as well as the source code used and high-resolution plots can be found at
https://github.com/nandomp/AIParadigmsSafety.

Table 1. The 14 categories of AI techniques we use in this paper. Given the
relevance of machine learning today, and neural networks in particular, we
retained several categories of machine learning techniques (general, declara-
tive, and parametric ML, separate from neural networks).

Technique category Some example subcategories and techniques
Cognitive approaches Cognitive services and architectures, affective computing

Declarative machine learning Rule learning, decision trees, program induction, ILP
Evolutionary & nature-inspired methods Ant colony, LCS, genetic algorithms, DNA computing

General machine learning Generative models, Gaussian models, AutoML, ensembles
Heuristics & combinatorial optimization SAT solver, constraint satisfaction, Monte Carlo search

Information retrieval Search engine, web mining, information extraction,
Knowledge representation and reasoning Semantic nets, CBR, logics, commonsense reasoning

Multiagent systems & game theory Distributed problem solving, cooperation, negotiation,
Natural language processing Topic segmentation, parsing, question answering

Neural networks Perceptron, convolutional network, GAN, RNN
Parametric machine learning Support vector machines, kmeans, mixtures, LReg

Planning & scheduling Backward/ forward chaining, action description language
Probabilistic & Bayesian approaches Naive Bayes, probabilistic model, random field

Reinforcement learning & MDPs Q-learning, deep RL, inverse RL

3.2 AI artefacts

For AI artefacts, we would like our categories to be more stable over
time and less tied to specific research techniques and applications.
One way to look beyond current trends is to consider textbooks or
even historical accounts of AI [28, 7, 31]. It may also be helpful to
begin by considering broad ‘characteristics’ of AI systems indepen-
dent of the specific techniques used to develop them [18].

To generate a preliminary set of artefacts, a group of multidis-
ciplinary researchers conducted a systematic, interactive procedure
based on the Delphi method [11]. The group began by indepen-
dently brainstorming possible candidates for categories of artefacts
based on a preliminary discussion of those arising from AI textbooks
and different AI system characteristics. Two criteria were provided
to structure this initial brainstorm: (1) artefacts should ideally have
minimum overlap, each capturing distinctive functionalities, and (2)
artefacts should be defined independently of how functionalities are
achieved (i.e. independent of techniques). Group members each pro-
posed lists of distinctive type of AI systems, supported by exemplars,
which were revised using an iterative process until the list of answers
converged towards consensus. These were then clustered hierarchi-
cally to produce a set of artefacts which could cover the space of
actual and potential AI systems as exhaustively as possible. The cat-
egorisation of AI artefacts in Table 2 is the result of this process.

Building on the categories identified in [18], we can further char-
acterise these different artefacts in terms of their integration with the
external environment, in three ways: (1) how it interfaces with the
environment (e.g. via sensors and actuators, via digital objectives,
or via language); (2) the dynamics of this integration (whether it
is interactive or functional); and (3) the location of this integration
(whether it is centralised, distributed, or coupled). For example, an
agent interfaces with the environment via sensors and actuators in an
interactive and centralised way. A swarm has similar characteristics
except that the location of its integration is distributed (across dif-
ferent units) rather than centralised. We also provide examplars for
each category: self-driving cars and robotic cleaners are examples of
agent-type systems, whereas a multiagent network router or drone
swarm are examples of swarm-type systems. We outline these char-
acteristics to show that the artefacts are sufficiently comprehensive
and distinctive to provide a useful basis for further analysis, though
as with any clustering there are some overlaps and borderline cases.

3.3 Empirical analysis of techniques and artefacts

Using our categories of techniques (e.g., neural networks, informa-
tion retrieval, cognitive approaches, etc.) and artefacts (e.g., estima-
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Table 2. Ten different kinds of AI artefacts, key characteristics and some exemplars.

Artefact Description Interface Dynamics Location Exemplars
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AGENT A system in a virtual or physical environment perceiving
(observations and possibly rewards) and acting

sensors and
actuators

• • a self-driving car, an autonomous drone, a
robotic cleaner, a video game NPC

ESTIMATOR A system representing an injective mapping from inputs to
an extrapolated or estimated output

digital objects • • a medical diagnostic model, an oracle, a face
recognition system, a news feeder

PROVIDER A system that waits for petitions that follow a protocol and
responds with a solution for them

command and
objects

• • a proof-editing and translation cognitive
service, a voice processing system

DIALOGUER A system that performs a conversation with a peer to
extract information, explain things or change behaviour

language • • virtual tutoring system, a chatter-bot sales
assistant, healthcare assistant

CREATOR A system that builds new things creatively following some
patterns, constraints or examples

specs. and/or
examples

• • a GAN generating faces, personalised email
replier, simulated world generator

EXTRACTOR A system that searches through a structured or unstructured
knowledge base to retrieve some objects

conditions and
objects

• • an expert system, a maths pundit, a web search
engine, an infor. retrieval system

ORGANISM A system that takes advantage of the environment or other
systems to live, hybridise/mutate and reproduce

resources • • • an intelligent computer worm or virus, artificial
life, von Neumann probe

OPTIMISER A system that finds an optimal combination of elements or
parameters given some constraints

constraints and
objects

• • • a train scheduling system, an electricity
optimising system, theorem prover

SWARM A system that behaves as the coordination of independent
units through cooperation and/or competition

sensors, actuators,
communic.

• • a multiagent network router, a drone swarm, a
robotic warehouse, blockchain AI

EXTENDER A system that regularly augments or compensates
capabilities of another system (e.g., a human)

commands,
sensors, responses

• • a memory assistant for people with dementia, a
brain implant, a smart navigator
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Figure 2. Evolution of the relevance proportion for the period 1970-2017, using research-oriented (Research) and non-research (Media) sources from AI
topics. Left: 14 categories of techniques in Table 1. Right: 10 categories of artefacts in Table 2.

tor, agent, dialoguer, etc.), we now conduct an empirical analysis of
how these different paradigm components have appeared in research
papers and other related literature. This analysis will allow us to ex-
plore more empirically which paradigm elements have been promi-
nent at different times, and will form the basis for investigating the
relationship between paradigms and safety issues later in this paper.

To conduct this analysis, we work with AI Topics6, an official
database from the AAAI, using the documents from the period 1970-
2017 (complete years). This archive contains a variety of documents
related to AI research (news, blog entries, conferences, journals and
other repositories) that are collected automatically with NewsFinder
[8]. We divide the archive into research documents7 and non-research
documents. From the ∼111K documents gathered, ∼11K are re-
search papers and the remaining ∼100K are mostly media. With a
mapping approach between the list of exemplars (tokens) of tech-
niques and artefacts (e.g., “Deep Learning”, “GAN” or “perceptron”

6 https://aitopics.org/misc/about.
7 We consider research those documents from the sources: “AAAI Confer-

ences”, “AI Magazine”, “arXiv.org Artificial Intelligence”, “Communica-
tions of the ACM”, “IEEE Computer”, “IEEE Spectrum”, “IEEE Spectrum
Robotics Channel”, “MIT Technology Review”, “Nature”, “New Scientist”
and “Science”.

are illustrative exemplars of the “neural network” technique; “classi-
fier”, “decision-making“ or “object recognition” are exemplars of the
“estimator” artefact50), and the tags obtained from AI Topics (sub-
strings appearing in titles, abstracts and metadata), we summarise the
trends in a series of plots. The evolution of techniques and artefacts
in these documents (i.e., fraction of papers focusing on the list of to-
kens for each technique category or artefact) is shown in Figure 2,
where the data has been smoothed with a moving average filter in or-
der to reduce short-term volatility in data. Note that this figure shows
the aggregation of categories (techniques and artefacts) where each
area stack is scaled to sum to 100% in every certain period of time.
In a way, this can be understood as a non-monolithic view of polari-
ties and intensities in sentiment analysis (e.g., identifying sentiment
orientation in a set of documents).

We see some techniques and artefacts are particularly dominant,
as might be expected. For instance, looking at the techniques (left
plot), ‘knowledge representation and reasoning’ takes almost half of
the proportion of documents between 1980-1990, while ‘general ma-
chine learning’ becomes more relevant from 2005. We also see an
important peak of multiagent systems around 2000. When we look
at the artefacts (right plot), we see that ‘extractor’ (which includes
expert systems) became very popular around 1990 but in a matter
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Figure 3. Evolution of the relevance proportion for the period 1970-2017, using research-oriented (Research) and non-research (Media) sources from AI topics
(everything like Figure 2, except that here we only include the documents related to AI safety).

of a decade was overtaken by ‘agent’, which became dominant in
2000. We see today that five kinds of artefacts account for about
90% of all mentions: estimators, agents, optimisers, extractors and
creators. These patterns also show that some artefacts are not new as
a paradigm component, especially when we consider them in a more
abstract way. For instance, it is sometimes understood that GANs in-
troduced a new paradigm, but other kinds of generative systems have
been around in AI since its exception, as we see in the violet band in
Figure 2 (right).

We can also use this analysis to explore what techniques and arte-
facts are prominent in the media. In Figure 2, we look at all the
non-research papers, shown in the ‘Media’ column besides each ‘Re-
search’ plot. In this case, we can only show selected documents for
the last two (complete) years8. We see that the dominances are more
extreme. For the techniques (Figure 2, left), ‘neural networks’ and
‘general machine learning’ occupy more than 75% of total mentions.
On the right, we see that the distribution of artefacts is different,
but also extreme: only four artefacts (‘estimator’, ‘agent’, ‘dialoguer’
and ‘creator’) cover more than 90% of mentions. In this case, we see
that ‘optimiser’ and ‘extractor’ are less visible for laypeople than for
researchers, while ‘dialoguer’ is more relevant for laypeople (most
probably because of the common use of digital assistants).

4 PARADIGMS AND SAFETY ISSUES
To begin exploring how paradigms relate to safety issues in AI re-
search, we conduct two different analyses. First, we look at the rel-
ative prominence of different techniques and artefacts specifically
within research publications and other publications that are related to
safety. This will help us to discern how the prominence of different
paradigms differs in safety research from AI research as a whole, and
to consider whether some paradigms are under- or over-represented
in the safety literature. Second, we look at how different safety is-
sues co-occur with different paradigms in the literature, enabling us
to understand which safety issues are considered to relate to which
paradigms, and to identify potential gaps in the literature.

4.1 Analysing paradigms within safety research
To explore the prominence of different AI techniques and artefacts in
AI safety literature, we begin by conducting a similar analysis to that

8 While AI topics provides research documents (mainly) from the 70s on-
ward, media-related documents come mostly from the last 2-3 years.

in section 3.3, but restricting to documents which make some refer-
ence to AI safety. We use a list of over 100 relevant tokens to filter
documents (Table 3, right column, shows some examples of tokens
for each type of safety issue50). Applying this filter, we find that,
from the ∼111K documents in AI Topics, about ∼21K are related to
safety, of which ∼1.5K are research papers, and ∼19K are broader
(mostly media) documents. Figure 3 shows the frequency of refer-
ence to different techniques and artefacts within this safety-specific
database. The results look similar to those for the enitre document
database in Figure 2, but there are some important differences. First,
the frequencies of reference to different techniques and artefacts are
more extreme and varied over time. This might be a consequence of
the smaller sample size, but we do see this pattern particularly with
the more dominant terms, where we have a reasonable sample size.
In particular, we see that for AI research as a whole, ‘knowledge and
reasoning’ was a dominant technique between the mid 1970s and
mid 1990s, taking up about 50% of references (Figure 2, left) —but
is even more dominant as a proportion of mentions in safety research
in the 1990s, at about 60% (see Figure 3, left). This is even more ex-
treme for the ‘extractor’ artefact, with about 50% of the documents in
the late 1980s (Figure 2, right), to more than 75% in the early 1990s
(Figure 3, right).

The most interesting observation comes from looking at the pe-
riods when these peaks happen for different techniques (comparing
the left plots of Figure 2 and Figure 3). The peak for ‘knowledge rep-
resentation and reasoning’ happened in the mid 1980s when looking
across AI research in general, but in the early 1990s when filtered by
papers which mention safety. The peak for ‘planning and schedul-
ing’ took place in the late 1990s across all papers but a few years
later (and was more pronounced) when filtered by safety-relevant
papers. We see a similar pattern for artefacts (comparing right plots
of Figures 2 and 3): ‘extractors’ is dominant in the AI literature in
the late 1980s, but only become prominent in safety research in the
early 1990s; ‘agents’ rise to prominence in AI research in the late
1990s but only peak in safety research in the early 2000s. This sug-
gests a five-year delay (approximately) between when a technique
or artefact becomes popular within general AI research, and when
researchers begin to seriously consider the safety issues associated
with it. This suggests that safety issues are considered reactively in
response to dominant research patterns, and are only considered once
a paradigm has been prominent for several years (rather than safety
issues related to a given technology being considered at the outset of
research, as is more often the case in domains like engineering). In
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Figure 4. Left: Mapping between techniques and safety issues from research papers from AI topics (2010 to 2018). The width of each band connecting two
elements represents the number of papers with both elements. Right: Same for artefacts.

other words, we find that there is a delay between the emergence of
AI paradigms and safety research into those paradigms, and safety
research neglects non-dominant paradigms.

Looking at the plots for non-research documents (comparing doc-
uments filtered for safety (Figure 3, Media), with all documents (Fig-
ure 2, Media), we see that the plots are almost identical. The only
slight difference is that both ‘natural language processing’ techniques
and ‘dialoguer’ artefacts are less prominent in articles filtered for
safety, suggesting that the media and laypeople are perhaps less con-
cerned about the harms of conversational systems than experts are.

4.2 Mapping paradigms to safety issues

Next we look more closely at how different AI paradigms relate to
specific safety issues. To do this, we need a way to categorise dif-
ferent safety issues. Though existing categorisations of safety issues
exist [25, 34], we found these were too coarse for our purposes (e.g.
[34] uses just three categories). Building on these existing categori-
sations, we identified key terms in surveys, blogs and events in AI
safety [6, 2, 23, 14, 41, 37], and clustered them into groups. Through
this process we identified 22 categories, as shown in Table 3. Our
clustering process attempted to aggregate safety categories in an ab-
stract way, independently of the subfield in which a term occurs most
frequently. For instance, ‘distributional shift’ is the term used in ma-
chine learning, whereas ‘belief revision’ is the term used in the area
of knowledge representation and reasoning. However, both refer to
solving the same type of problem —where a system has to adapt or
generalise to a new context— so we group both together under the
‘problem shift’ category.

With this list of categories, we then analyse how related different
paradigms and safety issues are, by counting the number of papers
(of those filtered for safety relevance) which mention both a given

paradigm component (technique or artefact) and a given safety issue,
for all combinations of techniques and safety issues (and the same
analysis, separately, for artefacts). Figure 4 shows these relation-
ships, where the width of each band represents the number of papers
including reference to both elements, with techniques/artefacts on the
left, and safety issues on the right. The most general safety issues,
such as ‘trust, transparency & accountability’, ‘privacy & integrity’,
‘reliability & robustness’, ‘problem shift’ and ‘interpretability’, have
the widest bands linking them to different paradigm components, and
tend to be linked to a wide variety of different paradigm components
(shown by the ‘multicolour’ bands coming out from these issues).

We notice several interesting insights about the relationship be-
tween safety issues and techniques or artefacts. The issue of ‘prob-
lem shift’ is largely associated with ‘knowledge representation and
reasoning’, which is surprising since we might expect the broad prob-
lems of generalising to new contexts and distributions to be relevant
to a wide range of techniques. This may be due to the relevance of
belief revision in this kind of techniques. ‘Privacy and integrity’ is
associated with many techniques, but not with reinforcement learn-
ing —which makes sense, given that reinforcement learning is much
less likely to make use of personal data than other techniques. How-
ever, reinforcement learning is also not related to ‘safe exploration
and side effects’, and is only very weakly associated with ‘problem
shift’, which is more surprising, since these do seem like issues that
are important for ensuring RL systems are used safely. Part of the
reason for this may be that our analysis simply did not find much
mention of safety issues in relation to reinforcement learning over-
all. While we must recognise the limitations of the database we had
access to (perhaps AI topics does not capture the kinds of venues
where safe reinforcement learning research is published), this does
suggest that greater exploration of safety issues related to reinforce-
ment learning is an important gap. Similarly, there is relatively little
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Table 3. AI safety issue groups and their specific problems.

AI Safety Issue Category Examples of specific AI problems included in the category
Adversarial attacks Adversarial examples, white/black-box attacks, poisoning, policy manipulation.
AI race & power AI race, monopolies, oligopolies.
Authenticity & obfuscation Impersonation, authentication problems, fake media, plagiarism, obfuscation
Autonomous weapons Military drones, killer robots, robotic weapon.
Confinement problem AI boxing breach, containment breach.
Corrigibility & interruptibility Switch-off button problems, rogue agents, self-preservation taking control.
Dependency Cognitive atrophy, lack of independence, google effect, ...
Interpretability Lack of intelligibility, need for explanation.
Malicious use Malign uses of AI, malicious control, hacking.
Manipulation Nudging, fake news, manipulative agents.
Misuse & negligence AI misuse, negligent use.
Moral dilemma Moral machine issues, utilitarian ethics problems, choosing ethical preferences.
Moral perception & machine rights Robot rights recognition, moral status disagreement, uncanny valley.
Privacy & integrity Inconsistency, private access breach, GDPR violation.
Problem shift Distributional shift, concept drift, lack of generality, distribution overfitting.
Reliability & robustness Error intolerance, robustness issues, reliability problems.
Reward problems Honeypot problem, reward corruption, tripwire issues, tampering, wireheading.
Safe exploration & side effects Negative side effects, unsafe exploration, uncontrolled impact.
Scalable supervision Supervision costs, human-in-the-loop issues, sparse rewards.
Self-modification Unintended self-modification, uncontrolled self-improvement.
Specification & value alignment Instrumental convergence (paperclip), resource stealing, misalignment.
Trust, transparency & accountability Lack of transparency, lack of trust, untraceability.

literature linking probabilistic and Bayesian approaches or evolution-
ary approaches in ML to safety issues.

When we focus on less covered safety issues, we see that the asso-
ciations are less multicoloured. For instance, ‘scalable supervision’
and ‘specification & value alignment’ are associated only with rein-
forcement learning, and ‘adversarial attacks’ only with ‘neural net-
works’. More surprising are the associations of ‘confinement prob-
lem’, ‘manipulation’ and ‘safe exploration & side effects’. Overall,
most attention is paid to a few now prominent safety issues, but more
specific issues have very limited combinations with some techniques.

The right plot in Figure 4 shows the analysis for artefacts. In this
case, also looking at the circle from right to left, we see multicolour
bands relating some of the more prominent safety issues to a vari-
ety of different artefacts. The ‘agent’ paradigm component, which
is more prominent in general, is associated with the widest range of
safety issues by far —suggesting that more research on safety issues
associated with different artefacts may be worthwhile.

In general, across techniques and artefacts, we see that ‘reliability
and robustness’ is by far the most frequently discussed safety issue
—perhaps because it is more immediately and directly related to the
performance of a system than the others. This is followed by ‘trust,
transparency and accountability’, ‘privacy and integrity’ and ‘prob-
lem shift’. More research into the less prominent safety issues and
how they relate to different paradigms would be valuable.

5 GENERAL DISCUSSION

A next step for this work would be to combine this mapping exercise
with deeper conceptual analysis of the relationship between tech-
niques, artefacts, and safety issues. For instance, the “confinement
problem” has been discussed in technical safety research relatively
recently [4], and is already strongly associated with optimisers, or-
ganisms and extractors (Figure 4, right): systems that are naturally
thought of as being encapsulated. However, other types of systems
—dialoguers, estimators, providers and extenders— might also learn
to behave in ways that go beyond their original specification or con-
straints, and it may be worth considering a wider range of “confine-
ment” problems across many different AI systems. More broadly,
thorough case studies of how a specific AI safety issue might arise for
different techniques and artefacts would be very valuable, as would

more systematic explorations of the various different safety issues
associated with a given paradigm broadly construed. Some recent
papers do go in this direction [41, 3].

Further analysis is needed regarding how more recent safety issues
relate to the kinds of AI artefacts being deployed in society today, and
the techniques those artefacts depend on. For instance, some recent
accidents involving self-driving cars may be thought of as a conse-
quence of people misunderstanding the type of artefact autonomous
vehicles currently are: while many regard them as ‘agents’, they are
really only ‘extenders’, and not yet meant to behave autonomously.
Terms such as ‘auto-pilot’ only aid this confusion. Other self-driving
car incidents have been caused by idiosyncratic imperfect perfor-
mance of object recognition systems, failing to detect a human or
other objects in rare situations.

For now, we recommend that research papers make explicit which
particular issues, artefacts and techniques they are covering, and
which ones they are excluding, and give some indications of why
it is the case (because it does not apply or left for future work).

Another avenue for further research would be to explore how dif-
ferent paradigm components (artefacts and techniques) relate to gen-
erality. The possibility of developing much more general systems has
often been a reason for concern about AI safety [1]; as a possibility
which raises much larger, more critical risks [6]. Considering which
AI techniques and artefacts are more likely to lead to or be associ-
ated with more advanced, general, systems can therefore enable us
to think about the scale of risks they may pose. If we are primar-
ily concerned with safety issues associated with greater generality
in systems, techniques involving transfer learning, curriculum learn-
ing, meta-learning, and other approaches looking for broader task
coverage –which we have included in the ‘general machine learn-
ing’ category— may be particularly important areas to pay attention
to [38]. When we look at the artefacts, many views of a general AI
system are typically associated with the ‘agent’ artefact. However,
there is no reason to believe that providers, optimisers, extenders,
etc., cannot become more general in the future, at least if we under-
stand generality as autonomously covering more and more tasks.

It is also worth noting that the prominence of an AI paradigm
in the research literature should not necessarily be the main factor
used to prioritise work on safety issues. Whether a paradigm results
in societal applications with associated safety issues may be more
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related to sociological factors than technology itself. The extent to
which a paradigm raises important safety issues is then associated
with widespread use rather than the number of researchers who work
on it (though these two things may be correlated). For instance, per-
sonal assistants are ubiquitous today, raising various safety and ethics
issues, but the underlying technological advances do not necessarily
correspond to a particularly prominent paradigm in AI research (re-
flected in the fact that personal assistants are more popular in media
articles —the right plot of figure 2— than in research papers). On
the other hand, adversarial examples may be crucial for understand-
ing the technical limitations of deep learning, but not so indicative of
real-world risks [16]. To identify and prioritise important safety is-
sues in future, therefore, more analysis of the techniques and artefacts
most likely to result in widespread use, taking into account sociolog-
ical factors, will be important.

The list of techniques and artefacts introduced in this paper can
help identify new safety issues, starting by identifying possible links
between these paradigms and safety issues that have not been made
before. We need to be able to be more anticipatory about what kinds
of problems might arise from different AI systems in future, while
at the same time avoiding being too speculative [2]. We hope that by
thinking more explicitly about how safety issues relate to techniques
and artefacts, AI safety research can both address challenges asso-
ciated with current research avenues, and prepare us for a variety of
potential future challenges.
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