
Shallow Neural Models for Top-N Recommendation
Alfonso Landin1 and Daniel Valcarce1 and Javier Parapar1 and Álvaro Barreiro1

Abstract. In the field of Information Retrieval, word embedding
models have shown to be effective in several tasks. In this paper, we
show how one of these neural embedding techniques can be adapted
to the recommendation task. This adaptation only makes use of col-
laborative filtering information, and the results show that it is able to
produce effective recommendations efficiently.

1 INTRODUCTION

In recent years, user interaction with information systems has shifted
from a proactive approach, where the user actively seeks the infor-
mation, to a more passive role, where the system suggests content
to the user. Recommender Systems (RS) have played a pivotal role
in this change, allowing users of a system to wade through the vast
amounts of available information.

Nowadays, top-N recommendation is the most popular task [1].
The goal of this task is to produce an ordered list of N items for
each user. Ranking metrics are commonly used for evaluating the
accuracy of the suggestions. Moreover, there are other properties,
such as diversity and novelty, usually considered in RS evaluation.

In this paper, we briefly present prefs2vec [6] and PRIN [3],
two collaborative filtering recommenders. While the approaches dif-
fer, both systems share a common underlying neural network archi-
tecture and training method, our adaptation of a popular Natural Lan-
guage Processing word embedding model to CF. In prefs2vec the
embeddings are used with a memory-based recommender, and PRIN
is a probabilistic model-based approach.

2 WORD EMBEDDING MODELS

In the Natural Language Processing (NLP) and Information Re-
trieval (IR) fields, words and documents have been traditionally rep-
resented using sparse high-dimensional vectors with one-hot and
bag-of-words models. Recently, the use of densely distributed rep-
resentations with lower dimensionality has gained attraction. In par-
ticular, word2vec [4, 5] has proven successful at several NLP tasks.

In word2vec two neural models are defined, the continuous bag-
of-words (CBOW) and the skip-gram (SG) models. The neural ar-
chitecture is the same for both models, a fully connected feedfor-
ward network with a single hidden layer. Their difference lies in how
they are trained, with CBOW learning to predict a word given its con-
text, i.e., the words surrounding target term in a fixed-length window,
while SG learns to predict the context given the word.

1 Information Retrieval Lab, Centro de Investigación en Tecnoloxías da In-
formación e as Comunicacións (CITIC), Universidade da Coruña, Spain,
email: {alfonso.landin,daniel.valcarce,javierparapar,barreiro}@udc.es

3 A USER AND ITEM EMBEDDING MODEL

Word embedding models assume that words appearing inside a fixed-
length context are related, and also that words that appear in different
documents surrounded by comparable contexts are similar. We pos-
tulate that those relations also hold on collaborative filtering data.

In an item-based scenario, items that have been rated by the same
user are assumed to have some relation. Moreover, if we take two
users that have rated all the same items when one user rates a new
item and the other rates another new item, we consider these two
items to be similar. In the user-based counterpart, all the users of an
item profile are related, and users that appear in different item profiles
surrounded by the same users are alike.

We adapted the CBOW model because we thought predicting an
item from a profile is a better fit for the recommendation task. More-
over, CBOW is more efficient than the SG model [4]. Figure 1 shows
the architecture of the model for the user-based (UB) case. The size
of the input layer is the number of users |U|, the size of the hidden
layer is d, a hyper-parameter of the model, and the output layer’s size
is also the number of users. Given an item, i and its profile Ui, i.e.,
the users that rated that item, the model is trained to predict each
user u of the item profile given the rest of the users in that profile.
An analogous architecture can be constructed for the item-based (IB)
counterpart.

x1

xu−1

xu+1

x|Ui|

W′
d×|U|

(|Ui| − 1)× |U|

d |U|

W|U|×d

W|U|×d

W|U|×d

W|U|×d

hu
yu

Figure 1. Neural model of prefs2vec and PRIN

The input of the model for a particular target user u in the pro-
file of item i consists of the context vectors {x1, . . . ,xu−1,xu+1,
. . . ,x|Ui|}, all the users that have rated i except u, using one-hot
encoding. The matrix W ∈ R|U|×d contains the weights of the con-
nections of the input layer with the hidden layer. Each row of this
matrix, vv , is taken as the input embedding of the user v. The activa-
tion function for the hidden layer is a linear function. The output of
the hidden layer for the target user u, hu, is calculated by averaging

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

the input embeddings weighted by the rating given by each user:

hu =
W∑

v∈Ui\{u}
rv,i

∑
v∈Ui\{u}

rv,i xv =

∑
v∈Ui\{u}

rv,i vv∑
v∈Ui\{u}

rv,i
(1)

where rv,i is the rating given by user v to item i. We use the weighted
average to incorporate the user ratings into the training process.

The ouput layer has one output for each user of the system, mak-
ing its size |U|. This layer uses a softmax activation function. The
weights between the hidden and the output layer are represented in
the matrix W′ ∈ Rd×|U|, with each column v′u being the output em-
bedding for user u. The component u of the output vector for target
user, yu, is calculated, using the softmax function, as:

p
(
u | Ui \ {u}) = (yu)u =

exp
(
v′Tu hu

)∑
v∈U

exp (v′Tv hu)
(2)

We generate a training example for each user u in the profile of
item i, for all the items. We train the model to maximize the likeli-
hood of the data, which is equivalent to minimizing the negative log
likelihood. Therefore the loss function is:

L = −
∑
i∈I

∑
u∈Ui

log p
(
u | Ui \ {u}

)
(3)

We learn W and W′ by back-propagation. The use of the softmax
function makes training this model impractical for large scale scenar-
ios [4, 5]: the cost of calculating the output of each training example
which is proportional to the number of users (see Eq. 2). Therefore,
we decided to use the negative sampling instead of softmax.

Additionally, Eq. 3 does not include any regularization. Our exper-
iments showed that the model was over-fitting the data. We choose to
use dropout regularization in the input layer to alleviate the problem.
We choose this over other types of regularization, such as `2, because
it provided better effectiveness and training times. At the same time,
it allows us to leverage existing word2vec implementations.

4 USING THE MODEL TO RECOMMEND
For recommending with this network, the simplest approach is to
use the embeddings produced with the model in a memory-based
recommender. We use the cosine similarity between the user embed-
dings to compute the user neighborhoods. We named this approach
prefs2vec [6], and source code is available online2. Producing
recommendations this way yields better results than the baseline
memory-based recommender using cosine similarity over the clas-
sical user representation, in terms of accuracy, novelty, and diversity.
It also surpasses several model-based baselines.

Another possibility is to use the prediction capabilities of the
model directly to make the recommendations. We do so by feeding
a complete item profile without removing any user. The output is the
posterior probability distribution of users given the item. This output
is not suitable to produce a ranking, as p(u|i) and p(u|j), i 6= j,
are not comparable because they are in different event spaces. We
can use Bayes’ rule to calculate the probability of the items given
the user, which is the basis for the ranking. The prior probability of
the users can be obviated to produce the ranking. A prior probabil-
ity distribution of the items needs to be provided. We dubbed this
recommender PRIN [3], and the source code is available online3. By

2 https://gitlab.irlab.org/alfonso.landin/prefs2vec
3 https://gitlab.irlab.org/alfonso.landin/prin

choosing between different estimations of the prior probability of
items, we can tune the properties of the recommender.

Results of experiments with the MovieLens 20M dataset for the
proposed models and recognized state-of-the-art model-based [2]
and memory-based [7] baselines can be seen in Table 1.

Table 1. Results on accuracy (nDCG@100), diversity (Gini@100) and
novelty (MSI@100) on the MovieLens 20M dataset. Statistical signifi-
cant improvements (wilcoxon test with p < 0.01) in nDCG@100 and
MSI@100 with respect to WSR-UB, WSR-IB, WRMF, prefs2vec-UB,
prefs2vec-IB and PRIN are annotated with a, b, c, d, e and f respectively.

Model nDCG@100 Gini@100 MSI@100

WSR-UB 0.4449be 0.0310 210.0885df

WSR-IB 0.3842 0.0310 213.6453adf

WRMF 0.4466abe 0.0481 248.0235abdf

prefs2vec-UB 0.4504abcef 0.0317 205.9805
prefs2vec-IB 0.4172b 0.0666 257.8653abcdf
PRIN 0,4470abce 0,0366 207,2515d

5 CONCLUSIONS
We briefly described in this paper how a popular shallow network
topology from the NLP field could be adapted to the collaborative
filtering scenario. We show how to train the model and make recom-
mendations. Results show that the resulting recommenders are more
effective than the baselines in the task. Moreover, the training method
preserves the efficiency of the original model, making the proposal
suitable for large scale scenarios.

ACKNOWLEDGEMENTS
This work was supported by project RTI2018-093336-B-C22 (MCIU
& ERDF), project GPC ED431B 2019/03 (Xunta de Galicia &
ERDF) and accreditation ED431G 2019/01 (Xunta de Galicia &
ERDF). The first author also acknowledges the support of grant
FPU17/03210 (MCIU)

REFERENCES
[1] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin, ‘Performance of

Recommender Algorithms on Top-N Recommendation Tasks’, in 4th
ACM Conference on Recommender Systems, pp. 39–46, (2010).

[2] Yifan Hu, Yehuda Koren, and Chris Volinsky, ‘Collaborative Filtering for
Implicit Feedback Datasets’, in Eighth IEEE International Conference
on Data Mining, pp. 263–272. IEEE, (2008).

[3] Alfonso Landin, Daniel Valcarce, Javier Parapar, and Álvaro Barreiro,
‘PRIN: A probabilistic recommender with item priors and neural mod-
els’, in 41st European Conference on IR Research, Part I, pp. 133–147,
(2019).

[4] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, ‘Efficient
estimation of word representations in vector space’, in 1st International
Conference on Learning Representations, Workshop Track Proceedings,
(2013).

[5] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey
Dean, ‘Distributed Representations of Words and Phrases and Their
Compositionality’, in 26th International Conference on Neural Informa-
tion Processing Systems, pp. 3111–3119, (2013).

[6] Daniel Valcarce, Alfonso Landin, Javier Parapar, and Álvaro Barreiro,
‘Collaborative filtering embeddings for memory-based recommender
systems’, Eng. Appl. Artif. Intell., 85, 347 – 356, (2019).

[7] Daniel Valcarce, Javier Parapar, and Álvaro Barreiro, ‘Language Models
for Collaborative Filtering Neighbourhoods’, in 38th European Confer-
ence on Information Retrieval, pp. 614–625. Springer, (2016).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

https://gitlab.irlab.org/alfonso.landin/prefs2vec
https://gitlab.irlab.org/alfonso.landin/prin

	INTRODUCTION
	WORD EMBEDDING MODELS
	A USER AND ITEM EMBEDDING MODEL
	USING THE MODEL TO RECOMMEND
	CONCLUSIONS

