
Maximum Entropy Reinforced Single Object
Visual Tracking

Chenghuan Liu and Du Q. Huynh and Mark Reynolds
The University of Western Australia

chenghuan.liu@research.uwa.edu.au, {du.huynh, mark.reynolds}@uwa.edu.au

Abstract. Single object visual tracking is a fundamental problem
in computer vision and has many applications. Given only the loca-
tion of the target of interest in the first video frame, a visual track-
ing algorithm must track the target until the end of the video while
having to face challenging factors such as illumination change and
scale variation. In this paper, we formulate this tracking problem in
a framework of maximum entropy reinforcement learning where the
agent is our visual tracker and the goal is to learn a tracking pol-
icy that maximises both the expected reward and its entropy so as
to achieve a balance between exploitation and exploration. The aim
of our tracking framework is to improve the tracking accuracy while
giving the tracking agent the ability to avoid getting stuck on a non-
target object. Extensive experiments have been performed on a range
of benchmarks where our method achieves state-of-the-art perfor-
mance. Furthermore, we demonstrate that, in contrast to other visual
trackers based on deep reinforcement learning, our method can run
in real-time while maintaining high tracking accuracy.

1 Introduction

Given the initial state of a target, usually its size and position in
the first frame of the video, the goal of visual tracking is to esti-
mate the position and size of the target in each of the following
frames. Visual Tracking has been a fundamental task in computer
vision and used in various applications. Even though various public
benchmarks [40, 17, 17, 27, 10] show that significant progress on
visual tracking has been made in the last decades, the performances
of many tracking algorithms are still affected by challenging factors
such as illumination change, deformation, and scale variation.

Recently, response maps obtained from, for instance, correlation
filtering, have been used in many tracking algorithms [4, 8, 15]. The
response maps help to simplify the tracking process as the translated
location of the target is normally found at the pixel whose response
value is the highest. Ideally, only one local maximum is present in
the response map for each video frame so that the visual tracker can
distinguish the target from the background perfectly. In reality, the
response map is more likely to be very noisy and have several local
maxima due to various reasons such as similar objects in the back-
ground or deformed appearance of the target. As a result, the visual
tracker may get stuck in the nearest local maximum that could be
a non-target object and is not able to get back to the correct target.
Intuitively, to avoid falling onto and getting stuck on a wrong local
maximum, the tracker should enlarge its search area to find the tar-
get when it is lost (if it is not occluded and its appearance has not
changed). However, this contradicts the core task of a visual tracker

which is to accurately estimate the state of the target. As the search
area is expanded, more distractions would be introduced, making the
decision-making process even harder for the visual tracker.

Visual trackers based on reinforcement learning (RL) have been
explored to improve the tracking performance against these chal-
lenges. ADNet [41] searches for the target in each frame through
actions repetitively sampled from the trained network. This requires
multiple references to the network and is not efficient. Chen et al. [5]
proposed ACT which is trained within the traditional actor-critic re-
inforcement learning framework. While ACT aims at getting good
accuracy (exploitation) only, the problem of getting stuck on the
non-target objects (exploration) is not well addressed. To fill these
research gaps, we formulate visual tracking in a maximum entropy
reinforcement learning framework. The sequential decision-making
process of reporting the target’s position and size is a typical Markov
Decision Process (MDP), where our tracker is the agent that keeps in-
teracting with the environment with actions sampled from the learned
policy. In the learning phase, the agent explores the state and action
spaces to find the optimal policy, penalising on losing the tracked
target or tracking the non-target objects (exploration), while aiming
at maintaining high tracking accuracy (exploitation). The deep neu-
ral network that is trained for the optimal policy allows the balance
between exploration and exploitation to be achieved. The framework
is thus able to yield tracking results that have the highest expected
reward as well as ensure that the entropy, i.e., the randomness of
the policy, is maximised. With “maximum entropy” being incorpo-
rated, our method is demonstrated to be more effective than previous
RL-based visual trackers with its competitive performances on pub-
lic benchmarks. Furthermore, different from the ADNet method that
tracks the target by making repetitive actions in each video frame,
our tracker only needs to perform one action in each frame (both in
training and testing), making it more efficient for online tracking.

Our contributions can be summarised as follows:
• In our method, the visual tracking problem is formulated in a max-

imum entropy reinforcement learning framework. The idea of tak-
ing “maximum entropy” into consideration is demonstrated in our
experiments in that our method is more effective than previous
RL-based visual trackers.

• We design in our RL-based visual tracker a novel representation
of the “state”, which captures both the information of the target’s
appearance as well as the response of its interaction with the back-
ground.

• We learn the tracking policy from the response map generated by
a correlation filter to help the visual tracker avoid getting stuck on
a non-target object during tracking.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



In the rest of the paper, we briefly review papers that are related
to the proposed method and then describe how our visual tracking
process is integrated into the maximum entropy reinforcement learn-
ing framework. We evaluate our method on five popular benchmarks
against state-of-the-art algorithms to demonstrate its competitive per-
formance.

2 Related Work
2.1 Visual Tracking
Currently, there are mainly two kinds of visual trackers: trackers
based on the correlation filter and trackers based on the siamese net-
work. The seminal work of visual trackers based on correlation filter
is the MOSSE filter [4] which has been extended by many methods,
such as introducing kernel trick [15], handling scale changes [9],
periodic effect alleviation [7], learning a transformation matrix for
model update [16], and using a 4-DoF similarity transformation [21].
Instead of the greyscale features used in MOSSE, HOG [15], fused
features [2], and deep features [8] have also been incorporated into
the correlation filter.

The siamese trackers have received increasing attention recently
thanks to their good balance between speed and accuracy. In these
trackers, a two-branch network takes both the candidate and tar-
get templates as inputs to generate a score map where the highest
value most likely corresponds to the target’s position. Attribute-based
CNN [30], fully connected network [3], correlation filter [38, 36] and
Region Proposal Network (RPN) [19] are also introduced into the
siamese tracking framework.

2.2 Reinforcement Learning
The goal of reinforcement learning (RL) is to obtain a policy to max-
imise the expected rewards by taking sequential actions to interact
with the environment [34]. Inspired by the recent successes in deep
learning, reinforcement learning has been able to solve many difficult
problems such as Atari games [25, 26] as well as a range of computer
vision applications like object detection [24], action recognition [35],
and person re-identification [42].

There are mainly two families of approaches in reinforcement
learning: value-based methods [25] and policy-based methods [1].
Recently, actor-critic methods, which trade off the reduction of the
variance of policy gradients in policy-based methods with the bias
introduced from value-based methods, have been proposed, e.g.,
the DPG method [32] explores the deterministic policies instead of
stochastic policies normally used in reinforcement learning with con-
tinuous action space. Following that, the DDPG method [22] com-
bines DPG with the deep Q-Network (DQN) [25, 26] to concur-
rently learn a Q-function and a policy. The soft-actor-critic (SAC)
method [13] later adopts a stochastic actor in an actor-critic frame-
work to trade-off between exploration and exploitation.

2.3 Visual Tracking Based on Reinforcement
Learning

Several attempts have been made to incorporate reinforcement learn-
ing into the visual tracking problem. To deal with the problem of er-
roneous update of target’s appearance model during online tracking,
Choi et al. [6] use RL to learn a policy that can select the appro-
priate template. The ADNet of Yun et al. [41] tracks the target by
making repetitive actions sampled from the action-decision network

that is trained with a combination of supervised learning and rein-
forcement learning. They also use reinforcement learning to explore
the potential of training the agent using weakly labelled data. Zhong
et al. [43] then extends ADNet to a hierarchical tracking framework
by combining it with the Kernelized Correlation Filter [15] and they
also adopt the peak-to-sidelobe ratio (PSR) metric to detect potential
tracking failures. The DRL-IS [31] integrates an actor-critic frame-
work into visual tracking to iteratively predict the target’s shift. In-
stead of performing repetitive actions, Chen et al. [5] propose to pre-
dict the target’s state in a continuous space where only one action
is taken for each video frame. They focus on getting good tracking
accuracy (exploitation) only but ignore the problem of getting stuck
on the non-target objects (exploration).

3 Proposed Method
We firstly outline the correlation filter for visual tracking and then de-
scribe how our tracking problem is formulated within the reinforce-
ment learning framework. Next, the training process and the imple-
mentation details are given. The standard notations for reinforcement
learning [1, 13, 22] are used where possible.

3.1 A Revisit of Correlation Filter Tracking
In correlation-based visual tracking, given an image patch X that
denotes the target to be tracked, our goal is to find the weight matrix
W such that

‖WX−Y‖+ λ‖W‖ (1)

is minimised. Here λ is a regularisation coefficient and Y is the de-
sired regression response when X is auto-correlated with itself. In
the 2D image space, Y is often modelled as a 2D Gaussian centred
at the centroid of X. It is straightforward to verify that the Fourier
transform of W can be computed as follows:

Ŵ =
ŶX̂

X̂
∗
X̂ + λ

, (2)

where superscript ∗ denotes the complex conjugate, and ˆ denotes
the Fourier transform.

In a new video frame where the tracked target has moved slightly
to a different location and its appearance may have changed slightly
also, the response map M of the candidate image patch Z can be
computed via the inverse Fourier transform F−1 as follows:

M = F−1
(
ŴẐ

)
. (3)

It can be easily verified that if Z = X (i.e., the tracked target is
stationary and there is no change in appearance) then M = Y and
the pixel coordinates giving the maximum response will remain at
the same centroid. Otherwise, the pixel location having the maximum
correlation response is the translated centroid of the tracked target in
the candidate image patch Z. The Z and X image patches described
above are both high-dimensional feature maps, e.g., computed from
a convolutional neural network.

3.2 Maximum Entropy Reinforced Tracker
The aim of a visual tracker is to estimate the target’s size and position
in each video frame after the ground truth information of the target
is given in the first frame. This typical problem of making sequential
decisions can be considered as a Markov Decision Process (MDP).
The basic components of an MDP include a set of states S, a set of
actions A, a state transition function T and a reward function R. In

2

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



𝝁௧

𝝈௧

Candidate

Target

ResNet-18 (𝑔)

ResNet-18 (𝑔)

Correlation
Filter

𝒔௧

𝒁௧

𝒁௧ Conv

Pooling

𝑴௧

Policy 𝜋

𝒅௧ିଵ

𝒂௧

𝒅௧

𝒛௧

𝒎௧

Linear

Linear

Linear

Linear

Actor

Linear

Critic

Prediction Module

Randomness Module

𝑄థభ

𝑄థమ

𝑉ట

Flatten

𝑓ଶ

Flatten

𝑓ଵ

Linear 𝑉టᇱ

𝑿௧
Expected
Reward

Figure 1: The training pipeline of the proposed method. Both the candidate and the target are passed to ResNet-18 for feature extraction.
The correlation filter takes the features as input and produces the response map. The Actor tracks the target using the policy generated by
the prediction and the randomness modules. The Critic evaluates the action taken by the Actor and output expected reward for the network
parameter update.

⊙
denotes concatenation and

⊕
means element-wise addition.

our MDP formulation, the visual tracker is the agent, which makes
sequential decisions (actions) in every video frame to track the target.
In frame t, using the known state st ∈ S, the agent needs to find an
optimal action at ∈ A which maximises the reward rt and yields the
state st+1 computed via state transition function T . Our pipeline is
end-to-end, taking a video and the target bounding box coordinates
in its first frame as input and producing the bounding box coordinates
for each video frame as outputs. Being end-to-end, it means that our
pipeline is easy to train, optimise, and reason with. The detailed set-
tings of these components are given in the subsections below.

3.2.1 State

To capture both the target’s appearance and the response of the inter-
action with the background, we define the state st ∈ S to consist of
two parts:

• the processed feature representation zt of the candidate;
• the processed response map mt calculated by the correlation filter.

We denote the target bounding box in frame t by dt=(xt, yt, x
′
t, y
′
t),

where (xt, yt) and (x′t, y
′
t) represent its top-left and bottom-right

corners. Vector dt is either the ground truth bounding box given in
the first frame (t = 1) or the optimal bounding box estimated by our
tracker (t > 2). Using the bounding box dt−1 from frame t−1 and
the image frame It, the feature zt is computed as follows:

zt = f1(Zt) = f1(g(dt−1, It)), (4)

where Zt = g(dt−1, It) is the 2D feature map of the candidate,
f1(·) produces a flattened vector of the input feature map after it
has passed through a convolutional layer. As the correlation filter re-
quires sufficient background information around the bounding box
of the tracked object, the g function handles the feature map com-
putation after the bounding box cropped from the input frame It has
been padded with background pixels.

In the training phase, the candidate feature map Zt is compared
with the ground truth feature map Xt = g(Gt, It), where Gt =
(x̄t, ȳt, x̄

′
t, ȳ
′
t) denotes the ground truth bounding box. So the re-

sponse map Mt can be computed using Xt and Zt (Eq. (3)). The
vector mt is produced by downsampling (average pooling) the re-
sponse map Mt and then a flattening operation via f2, i.e.,

mt = f2(Mt). (5)

Finally, the state st is defined as

st = concat(zt,mt). (6)

3.2.2 Action

In frame t, the tracking agent samples one action at according to
the state st using a suitable tracking policy π, i.e., at ∼ π(·|st). We
define the action as at = (∆xt,∆yt,∆x

′
t,∆y

′
t) which describes the

translation of the target estimated by the tracking agent. The optimal
bounding box dt of the target is then calculated as

dt = dt−1 + at. (7)

3.2.3 State Transition

The state transition T for the tracking agent is more complex than the
reinforcement learning framework in game playing as the state and
action spaces are both continuous. In a nutshell, once the bounding
box dt is obtained from at using (7), it can be used for the next frame
It+1 to yield zt+1 and mt+1 using (4)-(5) and so on.

3.2.4 Reward

In reinforcement learning, the reward at time t is a measure of how
good an action is. In the visual tracking setting, the reward rt depends
on how good the bounding box dt (as a result of taking action at) is,
i.e., whether it coincides well with the ground truth bounding box.
So rt can be defined as

rt =

{
IoU(dt,Gt), if IoU(dt,Gt) > τ

−1, otherwise
(8)

where IoU(·) returns the intersection-over-union score of two bound-
ing boxes and τ is a threshold. In (8), a negative reward may result
if the IoU value is too small, indicating that the tracker is losing (or
has lost) the target.

3.2.5 Training Pipeline

The training pipeline of the proposed method is shown in Figure 1
(see also the pseudocode given in the algorithm). Our tracking agent
is trained under the Soft Actor-Critic (SAC) framework proposed by
Haarnoja et al. [13]. In this framework, the Actor controls how the

3

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



tracking agent behaves based on a policy π while the Critic, con-
sisting of the Q-functions and V-functions, measures how good the
action taken is.

The training process here is similar to game playing. In each iter-
ation, a video is randomly selected from the training set. The ground
truth bounding box d1 is given in the first video frame I1 to ini-
tialise the visual tracker and the tracking process starts from frame
2. To be consistent with the terminology used in visual tracking, we
denote the initial state in our method as s2 rather than s0 which is
commonly used as the initial state in reinforcement learning.

Given d1 and I1, the ground truth feature map X1 is obtained from
g(G1, I1). The correlation filter is then initialised using (2) which
sets up the variable Ŵ. From the video frame t > 2, using the input
frame It, vectors zt and mt are computed using (4) and (5); state
vector st is then obtained from (6). The policy π is modelled as a 4-
dimensional Gaussian distribution with mean µt and covariance ma-
trix diag(σt), where µt ∈ R4 is produced by the prediction module
and σt ∈ R4 is produced by the randomness module. Both modules
are modelled as linear layers in the pipeline (Figure 1). In the training
phase, the ground truth feature maps Xt = g(Gt, It), ∀t > 2, are
used to guide the tracking process which in turn helps to optimise the
policy π.

The tracking agent keeps interacting with the environment un-
til the tracking process terminates because the end of the video is
reached or when the target is lost. We use a binary variable p to de-
note whether the tracking process is still active. When p = 0, it
means that the tracking process is still on-going; when p = 1, it
means that the tracking process has stopped, equivalent to “game
over” in playing a game. We define bt = (st,at, rt, st+1, pt+1) as
the training sample for video frame t. However, these training sam-
ples are not independently and identically distributed because they
are sequentially generated. They are therefore not suitable to use
for training neural networks in the proposed method. To deal with
this problem, we adopt the same “replay buffer” trick used by Lill-
icrap et al. [22] to store the training samples for all t. So the whole
tracking process can be explicitly represented by a replay buffer
B = (b2, · · · , bT−1) where T is the number of frames in the current
video or before tracking terminates, whichever is smaller. After all
the training samples are collected in B, our algorithm then samples
uniformly from B to train the neural networks.

3.2.6 Network Parameter Update

For the actor model, the goal is to learn the optimal policy π that
maximises the expected reward (tracking accuracy) and the entropy
at the same time. Different from the traditional reinforcement learn-
ing, the optimal policy π∗ in our maximum entropy RL framework
is defined as

π∗ = argmax
π

E

[
T∑
t=0

γt (R (st,at, st+1) + αH (π (·|st)))
]
, (9)

where E[·] denotes the expectation, 0 < γ < 1 is the discounted fac-
tor andH(·) denotes the entropy. In order to learn this optimal policy
π∗, we follow the setting in SAC [13] where our algorithm concur-
rently learns a policy π, two Q-functions Qφ1 and Qφ2 , and a value
function Vψ , where φ1, φ2 andψ are the corresponding parameters in
these functions. In this setting, rather than the Actor learns to evalu-
ate the expected reward, a Critic module is used to learn the complex
latent information (captured in Qφ1 , Qφ2 , and Vψ) that leads to op-
timal long-term reward.

To improve the stability of the training process, we adopt the

Algorithm Training Pipeline

1: Input: Training videos with ground truth bounding boxes of the
target; Nepoch: number of training epochs (default value 5000);
Niter: number of updating iterations (default value 1000)

2: Output: Trained network parameters for optimal policy
3: Initialise Q-function parameters φ1, φ2, V-function parameter ψ

and goal value function parameter ψ′.
4: for 0 6 i 6 Nepoch do
5: B ← ∅
6: Randomly choose one video from the training set
7: Initialise the correlation filter using I1 and d1.
8: Compute initial state s2 using I2 and d1

9: for 2 6 t 6 T − 1 do
10: Get action at ∼ π(·|st)
11: Execute at to get the new bounding box dt
12: Compute next state st+1 using (4), (5), (6).
13: Compute reward rt using (8).
14: if the target is lost or the video is finished then
15: pt+1 ← 1
16: end if
17: Store (st,at, rt, st+1, pt+1) in the set B
18: if pt+1 = 1 then
19: for 0 6 j 6 Niter do
20: Randomly choose Nb samples from B
21: Update φi in LQi using (10)
22: Update ψ in LV using (11)
23: Update parameters in Lπ using (12)
24: Update ψ′ with (13)
25: end for
26: break
27: end if
28: end for
29: end for

trick of goal value function1 that is commonly used in reinforcement
learning [22, 13, 25], i.e., a separate goal value function Vψ′ with
fixed parameter copied over from the value function Vψ is used and
is updated during training.

For each step in the update stage, Nb training samples
(st,at, rt, st+1, pt+1) are randomly drawn from B. The updating of
Q-functions and V-function can be achieved by minimising the losses
LQi and LV [13] defined below:

LQi =
1

Nb

∑
(st,at)∈B

(Qφi(st,at)− κ
q
t )

2 (10)

LV =
1

Nb

∑
st∈B

(Vψ(st)− κvt )2, (11)

where κqt = rt + γ(1 − pt+1)Vψ′(st+1) and κvt =
min
i=1,2

Qφi(st, ãt)− α log π(ãt|st).

Since our aim is to maximise the overall reward, the policy is up-
dated using gradient descent to optimise (see [13]):

Lπ =
1

Nb

∑
st∈B

(Qφ1
(st, ãt)− α log π(ãt|st)). (12)

Finally, the parameter of the goal value function ψ′ is updated with
incremental learning:

ψ′ ← ρψ′ + (1− ρ)ψ, (13)

1 We use the phrase goal value function instead of target value function to
avoid confusion with the target being tracked.

4

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Parameter θ λ τ γ α ρ
Value 0.01 0.01 0.5 0.99 0.2 0.995

Table 1: Parameter values used in the proposed method.

where ρ ∈ (0, 1) is the update rate.

3.2.7 Online Tracking

This is the testing phase of the algorithm. After the Actor which holds
the policy π has been trained, online tracking can be carried out. The
online tracking steps are similar to those described under the Training
Pipeline subsection except for the following:

• The reward rt does not need to be computed. This means that
the Critic is not required in online tracking (its role of helping
the Actor to generate optimal policy by optimising the expected
reward has been fulfilled).

• Ground truth bounding boxes are no longer available, except for
the first video frame. So, in Figure 1, X1 = g(G1, I1) as before,
but Xt, ∀t > 2, is the target model obtained from the incremental
learning in (14) below.

• The feature map Xt, for each t > 2, that represents the target
model is updated with incremental learning via

Xt = (1− θ)Xt−1 + θX′t, (14)

where 0 < θ < 1 denotes the learning rate and X′t = g(dt, It)
is the optimal feature map obtained from the computed dt. Vari-
able Ŵ is computed accordingly for Xt using (2) for each video
frame.

Lastly, the optimal bounding box dt output by our method is com-
pared against the ground truth for each frame t.

3.2.8 Implementation Details

The values of some parameters in our method are shown in Table 1.
We adopt a ResNet-18 [14] as the feature extractor g in (4). So the
dimensions of both Zt and Xt are 18×18×256. The response map
Mt is resized to 288×288. The candidate pre-process function f1 in
(4) includes a 1× 1 convolutional layer of 256 input channels and 1
output channel followed by a “flatten” operation. The response map
pre-process function f2 in (5) includes an average pooling layer with
a filter size of 4 and a “flatten” operation. So the dimensions of zt,
mt and st are 324, 5184, and 324+5184 = 5508 respectively. The
prediction module takes zt as input and outputs µt, while the input
and output of the randomness module are mt and σt. The linear
layers of these two modules output 4 neurons and have 324 and 5184
input neurons respectively. The Qφ1 , Qφ2 , Vψ , and Vψ′ functions
are all modelled as single linear layers having 5512, 5512, 5508, and
5508 input neurons respectively and 1 output neuron. 5000 epochs
(line 4 of pseudocode) for network training and 1000 iterations (line
19 of pseudocode) for updating the value function were found to be
sufficient based on our experiments. The parameter values used in
Table 1 were obtained from our hyperparameter search process.

Our method is implemented with PyTorch. In the online tracking
phase, our method is able to achieve real-time performance, process-
ing 50 frames per second on a desktop with Intel i7 CPU and TITAN
Xp GPU.

(a) OTB100 (b) UAV123

Figure 2: Success plots on OTB100 and UAV123 for comparison
with state-of-the-art methods. Larger area under curve (AUC) values
(number inside square brackets) mean better algorithms.

4 Experiments

4.1 Datasets

We evaluate the proposed method on 5 datasets: OTB100 [40],
UAV123 [27], LaSOT [10], VOT2016 [17] and VOT2018 [18],
which includes 100, 123, 280, 60 and 60 videos respectively. These
benchmarks have been widely used by the visual tracking commu-
nity. Almost all the challenging factors in visual tracking such as
illumination change, occlusion and deformation can be found in the
videos from these datasets.

For the OTB100, UAV123 and LaSOT datasets, the One Pass Eval-
uation (OPE) is used. In OPE, the tracker is initialised at the begin-
ning of the video and tracking is performed till the end of the video.
This is different from the “re-start” setting in the VOT datasets where
the evaluation toolkit automatically resets the tracker if a tracking
failure is detected (when the IoU score [39] between the ground truth
and the tracking result is zero).

4.2 Training Data

LaSOT has 1400 videos labelled with 14 different attributes: Illumi-
nation Variation (IV), Partial Occlusion (PO), Deformation (DEF),
Motion Blur (MB), Camera Motion (CM), Rotation (RO), Back-
ground Clutter (BC), Viewpoint Change (VC), Scale Variation (SV),
Full Occlusion (FO), Fast Motion (FM), Out-of-View (OV), Low
Resolution (LR), and Aspect Ratio Change (ARC). It is split into
a training set (having 1120 videos) and a test set (280 videos). Our
model is trained using the training set and the reported results of our
method on LaSOT are on the test set. The same trained model is also
used to test on other datasets reported in this paper.

4.3 Evaluation Metrics

For the OTB100, UAV123 and LaSOT (test set) datasets, we use
the success plot to evaluate our tracking algorithm. The success plot
measures the proportion of tracking successes against the IoU thresh-
old τ (see (8)). So when τ is small, most bounding boxes are deemed
to be good and the success rate is high. The area under curve (AUC)
is commonly used for comparing the performance of different track-
ing algorithms. For the VOT datasets [17, 18], we adopt the metrics
accuracy, robustness and expected average overlap (EAO) described
in their publications as the evaluation metrics.

5

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



CFNet CSRDCF ECO fDSST PTAV STRCF MDNet VITAL TRACA CF Baseline Ours
All 0.2746 0.2444 0.3241 0.2032 0.2503 0.3084 0.3970 0.3898 0.2575 0.3326 0.4106
IV 0.3180 0.2807 0.3733 0.2479 0.2660 0.3342 0.4074 0.4034 0.2936 0.2992 0.4441
PO 0.2464 0.2112 0.2900 0.1746 0.2171 0.2732 0.3699 0.3612 0.2398 0.3117 0.3932
DEF 0.2714 0.2349 0.2789 0.1621 0.2081 0.2738 0.3910 0.3841 0.2297 0.3137 0.4097
MB 0.2375 0.2261 0.3052 0.1926 0.2441 0.3238 0.3757 0.3631 0.2450 0.3137 0.3971
CM 0.2886 0.2506 0.3576 0.2024 0.2655 0.3436 0.4157 0.3974 0.2917 0.3303 0.4427
RO 0.2468 0.2213 0.2847 0.1718 0.2186 0.2647 0.3787 0.3706 0.2215 0.3258 0.3978
BC 0.2714 0.2329 0.3188 0.2216 0.2512 0.3167 0.3739 0.3646 0.2777 0.3070 0.3605
VC 0.2476 0.2376 0.3166 0.1364 0.2030 0.2832 0.3579 0.3386 0.2076 0.2752 0.3656
SV 0.2672 0.2394 0.3178 0.1951 0.2414 0.3028 0.3924 0.3850 0.2517 0.3249 0.4056
FO 0.1989 0.1666 0.2543 0.1423 0.1792 0.2345 0.3046 0.3010 0.2014 0.2947 0.3367
FM 0.1558 0.1398 0.2334 0.1176 0.1681 0.1977 0.2599 0.2465 0.1543 0.2768 0.3326
OV 0.1827 0.1754 0.2389 0.1373 0.1757 0.2315 0.3297 0.3038 0.1726 0.2844 0.3513
LR 0.1949 0.1772 0.2674 0.1470 0.1979 0.2450 0.3170 0.3086 0.1840 0.2910 0.3270
ARC 0.2430 0.2152 0.2884 0.1675 0.2119 0.2688 0.3664 0.3581 0.2270 0.3156 0.3961

Table 2: Experimental results on the LaSOT dataset. Results of other trackers are extracted from the authors’ papers.

ADNet RLS-CFV ACT DRL-IS RDT Ours
Implementation MATLAB Python Python Python Python Python
CPU/GPU Core i7 / TITAN X – / GTX 1060 – / TITAN GTX 1080 Ti Core i7 / TITAN X Core i7 / TITAN Xp
Frame rate 2.9 6.3 30 22 43 50
AUC (OTB100) 0.646 0.651 0.643 0.593 0.603 0.655
Year 2017 2018 2018 2018 2018 –

Table 3: Comparison with visual trackers based on reinforcement learning on the OTB100 dataset. The information for these trackers is
extracted from the authors’ publications.

α 0 0.1 0.2 0.3 0.5 0.7 0.9
AUC 0.610 0.620 0.655 0.645 0.637 0.623 0.619

Table 4: Evaluation of the maximum entropy on OTB100 dataset.

4.4 Ablation Study

4.4.1 Compared with Correlation Filter Baseline

As our tracker uses the output from the correlation filter to estimate
the target’s translation, we consider the correlation filter tracking as
our baseline. That is, the translation of the target is obtained from the
response map M in (3) directly without involving the Actor-Critic
part. We evaluate both our method and the baseline on the OTB100,
UAV123 and LaSOT (test set) datasets. As shown in Figure 2(a),
without the tracking agent trained using reinforcement learning, the
CF Baseline method only achieves 57.5% in AUC while the pro-
posed method gains 8% improvement and achieves 65.5%. The pro-
posed method also outperforms CF Baseline by 10.2% in AUC on
the UAV123 dataset (see Figure 2(b)). A gain of 7.8% in overall
AUC value compared to the baseline is also achieved by the proposed
method on LaSOT shown in Table 2.

4.4.2 Evaluation of Maximum Entropy

The parameter α in (9) indicates how much influences the entropy
term has on our algorithm. To demonstrate the effectiveness of “max-
imum entropy”, the proposed method is tested against different α
values on the OTB 100 dataset. As shown in Table 4, when the value
of α increases, the AUC value first increases as well and then drops
accordingly. While the best performance (AUC value) is achieved
when α = 0.2, the baseline of reinforcement learning tracking with-
out maximum entropy is when α = 0, which gives an AUC value of
61.0%. This demonstrates that the proposed maximum entropy rein-
forced tracker has improved a lot compared to the RL-based tracker
baseline.

4.5 Comparison with Visual Trackers Based on RL
Using the OTB100 dataset, we compare our proposed method with
other reinforcement learning based visual trackers including AD-
Net [41], RLS-CFV [43], ACT [5], DRL-IS [31] and RDT [6]. To
the best of our knowledge, our method is the first that combines vi-
sual tracking with maximum entropy reinforcement learning. Table
3 shows the AUC values and processing speeds of these six meth-
ods. Our method achieves the highest AUC value (65.5%), leading
the runner-up RLS-CFV by a small margin. The frame rates shown
in the table serve as a guideline only as the methods were not imple-
mented on the same hardware. However, it shows that with a mid-
range GPU, our method can already achieve a frame rate of 50 (for
pre-recorded videos).

4.6 Comparison with state-of-the-art methods
We compare our tracker with state-of-the-art methods on five chal-
lenging tracking benchmarks. All the results of other trackers are
extracted from either the authors’ papers or from the public bench-
marks. Depending on the availability of the tracking results, different
methods are compared for different datasets.

4.6.1 OTB100

The videos in OTB100 are labelled with 11 attributes. Figure 2(a)
shows the results of GCT [12], ECO-HC [8], SiamRPN [19], Deep-
SRDCF [7], UDT [37], SiamFC [3], Staple [2], HDT [29], DSST [9],
KCF [15], and our tracker on the OTB100 dataset. Our tracker
achieves the highest AUC value of 65.5% and gives an improvement
of 0.8% compared to the second place GCT.

4.6.2 UAV123

Besides some classic trackers such as KCF [15], DSST [9], and
ECO [8], the recent state-of-the-art method SiamRPN [19] is also
added to the comparison. Figure 2(b) shows that our proposed

6

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Datasets Trackers EAO ↑ Robustness ↓ Accuracy ↑

VOT2016

EBT (2016) 0.291 0.252 0.465
Staple (2016) 0.295 0.378 0.544
TCNN (2016) 0.325 0.268 0.554
DNT (2017) 0.278 0.329 0.515
SA-Siam (2018) 0.291 - 0.540
SiamRPN (2018) 0.344 - 0.560
TADT (2019) 0.299 - 0.550
Ours 0.361 0.242 0.623

VOT2018

ECO (2017) 0.280 0.276 0.484
DCFNet (2017) 0.182 0.543 0.470
SiamFC (2016) 0.188 0.585 0.503
SRCF (2018) 0.310 0.290 0.520
CFTR (2018) 0.300 0.258 0.505
SiamVGG (2018) 0.286 0.318 0.531
CSRDCF (2017) 0.263 0.318 0.466
SiamRPN (2018) 0.383 0.276 0.586
Ours 0.322 0.295 0.589

Table 5: Results on VOT2016 and VOT2018. The up arrow ↑ means
the higher the better and vice versa.

method achieves an AUC score of 55.9%, which is slightly higher
than the second-place SiamRPN, and outperforms ECO (50.6%) by
a large margin.

4.6.3 LaSOT

Table 2 shows the results of CFNet [36], CSRDCF [23], ECO [8],
DSST [9], PTAV [11], MDNet [28], VITAL [33], and the proposed
method. Our method achieves the best performances on all the cat-
egories except for Rotation (RO). Our method obtains an overall
41.06% AUC value, which is 1.36% higher than the second place
MDNet. For the Rotation category, our AUC value is 36.05%, which
is 1.34% lower than the first place MDNet. This slightly poorer per-
formance of our method is because the features extracted from the
convolutional neural network are not rotation-invariant. To generate
augmented data where the target is rotated for training might help
alleviate the effect of rotation.

4.6.4 VOT2016

Following the evaluation protocol of VOT2016, We test the proposed
method on all the videos. The comparison results are given in Table
5. Our method achieves the best performance on EAO, accuracy and
robustness. Compared with the latest method TADT [20], our method
gains a 0.062 improvement of EAO. Our method also outperforms
the current state-of-the-art method SiamRPN with a gain of 0.017 of
EAO.

4.6.5 VOT2018

The VOT2018 dataset contains 60 videos and has more accurate
ground truth bounding box compared to VOT2016. The evaluation
criterion in VOT2018 is the same as that in VOT2016, i.e., the tracker
is reset if the target is lost. In Table 5, we compare our method with
both correlation filter tracers and siamese trackers including ECO [8]
and SiamRPN [19]. Our method achieves the best performance in
terms of EAO (0.322) and accuracy (0.589), while maintaining a
competitive robustness score (0.295).

4.7 Qualitative Evaluation
The visual comparison between the proposed method and some rep-
resentative trackers including ECO-HC, DeepSRDCF, SiamRPN and

ECO-HC DeepSRDCF

SiamRPN UDT Ours

Figure 3: Screenshots from 3 challenging videos (top 3 rows) of
OTB100: Human9, CarScale, and Bike1. Two failure cases are from
videos MotorRolling and Trans (bottom row) of OTB100.

UDT on three videos taken from the OTB100 dataset is shown at
the first three rows of Figure 3. For videos Human9 and carScale,
the targets have very large scale variations. Our tracker can handle
this problem well and always gives precise bounding boxes. For the
video Bike1, the target (the biker’s head) moves very fast while the
biker jumps from left to right. Our tracker is still able to follow the
target while other trackers either lose the target or give much larger
bounding box than the target’s real size.

4.8 Failure Case Analysis
Two failure cases are shown at the bottom row of Figure 3. In the
video MotorRolling, the motor rider rotates 360 degrees. As men-
tioned above, the features extracted from CNNs is not rotation-
invariant. The screenshot shows that all the trackers fail to track the
target in this video as they all use CNNs for feature extraction. In the
video Trans, the target changes from a skinny and tall robot into a
vehicle on the ground. This kind of fast deformation is very difficult
for visual trackers to follow so the tracking failure is not unexpected.

5 Conclusion
In this paper, we have made the first attempt to combine visual track-
ing and maximum entropy reinforcement learning, to help our visual
tracker avoid getting stuck on the wrong targets while maintaining
high tracking accuracy. Our method has been evaluated on several
popular benchmarks and compared with state-of-the-art methods to
demonstrate its tracking accuracy and real-time processing speed.
Our future work will focus on how to deal with rotation as well as
fast deformation of targets.

7

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



REFERENCES

[1] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and
Anil Anthony Bharath, ‘Deep Reinforcement Learning: A Brief Sur-
vey’, IEEE Signal Processing Magazine, 34(6), 26–38, (2017).

[2] Luca Bertinetto, Jack Valmadre, Stuart Golodetz, Ondrej Miksik, and
Philip HS Torr, ‘Staple: Complementary Learners for Real-Time Track-
ing’, in CVPR, pp. 1401–1409, (2016).

[3] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi,
and Philip HS Torr, ‘Fully-Convolutional Siamese Networks for Object
Tracking’, in ECCV, pp. 850–865. Springer, (2016).

[4] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, ‘Visual Ob-
ject Tracking using Adaptive Correlation Filters’, in CVPR, pp. 2544–
2550, (June 2010).

[5] Boyu Chen, Dong Wang, Peixia Li, Shuang Wang, and Huchuan Lu,
‘Real-time ’Actor-Critic’ Tracking’, in ECCV, pp. 318–334, (2018).

[6] Janghoon Choi, Junseok Kwon, and Kyoung Mu Lee, ‘Real-time Visual
Tracking by Deep Reinforced Decision Making’, Computer Vision and
Image Understanding, 171, 10–19, (2018).

[7] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, ‘Learning Spa-
tially Regularized Correlation Filters for Visual Tracking’, in ICCV, pp.
4310–4318, (Dec 2015).

[8] Martin Danelljan, Goutam Bhat, F Shahbaz Khan, and Michael Fels-
berg, ‘ECO: Efficient Convolution Operators for Tracking’, in CVPR,
pp. 21–26, (2017).

[9] Martin Danelljan, Gustav Häger, Fahad Khan, and Michael Felsberg,
‘Accurate Scale Estimation for Robust Visual Tracking’, in BMVC,
(2014).

[10] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Hexin
Bai, Yong Xu, Chunyuan Liao, and Haibin Ling, ‘LaSOT: A High-
Quality Benchmark for Large-Scale Single Object Tracking’, in CVPR,
pp. 5374–5383, (2019).

[11] Heng Fan and Haibin Ling, ‘Parallel tracking and verifying:
A framework for real-time and high accuracy visual tracking’,
arXiv:1708.00153, (2017).

[12] Junyu Gao, Tianzhu Zhang, and Changsheng Xu, ‘Graph Convolutional
Tracking’, in CVPR, pp. 4649–4659, (2019).

[13] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine,
‘Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor’, arXiv:1801.01290, (2018).

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, ‘Deep
Residual Learning for Image Recognition’, in CVPR, pp. 770–778,
(2016).

[15] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, ‘High-Speed
Tracking with Kernelized Correlation Filters’, IEEE TPAMI, 37(3),
583–596, (March 2015).

[16] Jianglei Huang and Wengang Zhou, ‘Re2EMA: Regularized and Reini-
tialized Exponential Moving Average for Target Model Update in Ob-
ject Tracking’. AAAI, (2019).

[17] Matej Kristan, Aleš Leonardis, Jiři Matas, Michael Felsberg, Roman
Pflugfelder, Luka Čehovin, and et al, The Visual Object Tracking
VOT2016 Challenge Results, 777–823, Cham, 2016.

[18] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Felsberg, Roman
Pflugfelder, Luka Cehovin Zajc, Tomas Vojir, Goutam Bhat, Alan
Lukezic, Abdelrahman Eldesokey, et al., ‘The Sixth Visual Object
Tracking VOT2018 Challenge Results’, in ECCV, (2018).

[19] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu, ‘High Per-
formance Visual Tracking with Siamese Region Proposal Network’, in
CVPR, pp. 8971–8980, (2018).

[20] Xin Li, Chao Ma, Baoyuan Wu, Zhenyu He, and Ming-Hsuan Yang,
‘Target-Aware Deep Tracking’, in CVPR, pp. 1369–1378, (2019).

[21] Yang Li, Jianke Zhu, Steven CH Hoi, Wenjie Song, Zhefeng Wang,
and Hantang Liu, ‘Robust Estimation of Similarity Transformation for
Visual Object Tracking’, in AAAI, volume 33, pp. 8666–8673, (2019).

[22] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra, ‘Con-
tinuous Control with Deep Reinforcement Learning’, arXiv preprint
arXiv:1509.02971, (2015).

[23] Alan Lukezic, Tomas Vojir, Luka Cehovin Zajc, Jiri Matas, and Matej
Kristan, ‘Discriminative Correlation Filter with Channel and Spatial
Reliability’, in CVPR, pp. 6309–6318, (2017).

[24] Stefan Mathe, Aleksis Pirinen, and Cristian Sminchisescu, ‘Reinforce-
ment Learning for Visual Object Detection’, in CVPR, pp. 2894–2902,
(2016).

[25] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller, ‘Play-
ing Atari with Deep Reinforcement Learning’, arXiv preprint
arXiv:1312.5602, (2013).

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al., ‘Human-Level Con-
trol through Deep Reinforcement Learning’, Nature, 518(7540), 529,
(2015).

[27] Matthias Mueller, Neil Smith, and Bernard Ghanem, ‘A Benchmark
and Simulator for UAV Tracking’, in ECCV, pp. 445–461. Springer,
(2016).

[28] Hyeonseob Nam and Bohyung Han, ‘Learning Multi-Domain Convolu-
tional Neural Networks for Visual Tracking’, in CVPR, pp. 4293–4302,
(2016).

[29] Yuankai Qi, Shengping Zhang, Lei Qin, Hongxun Yao, Qingming
Huang, Jongwoo Lim, and Ming-Hsuan Yang, ‘Hedged Deep Track-
ing’, in CVPR, pp. 4303–4311, (2016).

[30] Yuankai Qi, Shengping Zhang, Weigang Zhang, Li Su, Qingming
Huang, and Ming-Hsuan Yang, ‘Learning Attribute-Specific Repre-
sentations for Visual Tracking’, in AAAI, volume 33, pp. 8835–8842,
(2019).

[31] Liangliang Ren, Xin Yuan, Jiwen Lu, Ming Yang, and Jie Zhou, ‘Deep
Reinforcement Learning with Iterative Shift for Visual Tracking’, in
ECCV, pp. 684–700, (2018).

[32] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wier-
stra, and Martin Riedmiller, ‘Deterministic Policy Gradient Algo-
rithms’, in ICML, (2014).

[33] Yibing Song, Chao Ma, Xiaohe Wu, Lijun Gong, Linchao Bao, Wang-
meng Zuo, Chunhua Shen, Rynson WH Lau, and Ming-Hsuan Yang,
‘VITAL: Visual Tracking via Adversarial Learning’, in CVPR, pp.
8990–8999, (2018).

[34] Richard S Sutton, Andrew G Barto, et al., Introduction to Reinforce-
ment Learning, volume 2, MIT press Cambridge, 1998.

[35] Yansong Tang, Yi Tian, Jiwen Lu, Peiyang Li, and Jie Zhou, ‘Deep Pro-
gressive Reinforcement Learning for Skeleton-Based Action Recogni-
tion’, in CVPR, pp. 5323–5332, (2018).

[36] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and P. H. S.
Torr, ‘End-to-End Representation Learning for Correlation Filter Based
Tracking’, in CVPR, pp. 5000–5008, (July 2017).

[37] Ning Wang, Yibing Song, Chao Ma, Wengang Zhou, Wei Liu, and
Houqiang Li, ‘Unsupervised Deep Tracking’, in CVPR, pp. 1308–1317,
(2019).

[38] Qiang Wang, Jin Gao, Junliang Xing, Mengdan Zhang, and Weim-
ing Hu, ‘DCFNet: Discriminant Correlation Filters Network for Visual
Tracking’, arXiv:1704.04057, (2017).

[39] Y. Wu, J. Lim, and M. H. Yang, ‘Online Object Tracking: A Bench-
mark’, in IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 2411–2418, (June 2013).

[40] Y. Wu, J. Lim, and M. H. Yang, ‘Object Tracking Benchmark’, IEEE
TPAMI, 37(9), 1834–1848, (Sept 2015).

[41] Sangdoo Yun, Jongwon Choi, Youngjoon Yoo, Kimin Yun, and Jin
Young Choi, ‘Action-decision Networks for Visual Tracking with Deep
Reinforcement Learning’, in CVPR, pp. 2711–2720, (2017).

[42] Jianfu Zhang, Naiyan Wang, and Liqing Zhang, ‘Multi-Shot Pedestrian
Re-Identification via Sequential Decision Making’, in CVPR, pp. 6781–
6789, (2018).

[43] Bineng Zhong, Bing Bai, Jun Li, Yulun Zhang, and Yun Fu, ‘Hi-
erarchical Tracking by Reinforcement Learning-based Searching and
Coarse-to-fine Verifying’, IEEE Transactions on Image Processing,
28(5), 2331–2341, (2018).

8

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain


