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Abstract. Efficient representation of text documents is an important
building block in many NLP tasks. Research on long text categoriza-
tion has shown that simple weighted averaging of word vectors for
sentence representation often outperforms more sophisticated neu-
ral models. Recently proposed Sparse Composite Document Vector
(SCDV) [32] extends this approach from sentences to documents us-
ing soft clustering over word vectors. However, SCDV disregards
the multi-sense nature of words, and it also suffers from the curse
of higher dimensionality. In this work, we address these shortcom-
ings and propose SCDV-MS. SCDV-MS utilizes multi-sense word
embeddings and learns a lower dimensional manifold. Through ex-
tensive experiments on multiple real-world datasets, we show that
SCDV-MS embeddings outperform previous state-of-the-art embed-
dings on multi-class and multi-label text categorization tasks. Fur-
thermore, SCDV-MS embeddings are more efficient than SCDV in
terms of time and space complexity on textual classification tasks.
We have released SCDV-MS source code with the paper. 6

1 Introduction

Distributed word embeddings such as word2vec [35] are effective
in capturing the semantic meanings of the words by representing
them in a lower-dimensional continuous space. A smooth inverse
frequency-based word vector averaging technique for sentence em-
beddings was proposed by [4]. However, because the final repre-
sentation is in the same space as the word vectors, these methods
are only capable of capturing the meaning of a single sentence.
Thus, embedding a large text document in a dense, low-dimensional
space is a challenging task. [32] attempted to resolve this problem
by proposing a clustering-based word vector averaging approach
(SCDV) for embedding larger text documents. SCDV embeds each
document by cluster-based averaging, thus representing each docu-
ment in a more representative space than the original vectors. This
model combines the word embedding models with a latent topic
model where the topic space is learned efficiently using a soft clus-
tering technique over embeddings. The final document vectors are
also made sparse to reduce time and space complexities in several
downstream tasks.

SCDV has many shortcomings: applying thresholding-based spar-
sity on the document representations can be unreliable since it is
highly sensitive to the number of documents in the corpus. SCDV
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does not utilize the word contexts to disambiguate word sense for
learning sense-aware document representations. Ignoring the multi-
sense nature of the words during the representation leads to cluster
ambiguity. SCDV neglects the negative additive effect of common
words such as ‘and’, ‘the’, etc. during final document representa-
tions. Lastly, the documents represented by SCDV suffer from the
curse of high dimensionality and cannot be utilized for deep learning
applications which require low-dimensional continuous representa-
tions. To overcome these challenges, we proposed a novel document
representation technique, namely SCDV-MS. Our proposed SCDV-
MS mitigated the above shortcomings by the following contributions.

1. To overcome the problem of cluster ambiguity SCDV-MS re-
placed the single sense word vector representations with multi-
sense context-sensitive word representations to resolve word sense
disambiguation.

2. SCDV-MS removed the noise in the final representation by ap-
plying a threshold-based sparsity directly on fuzzy word cluster
assignments instead of the document representations. Sparser rep-
resentations result in better performance, lower time and space
complexities.

3. To overcome the noisy negative additive effect of common words
such as ‘and’, ‘the’, etc. SCDV-MS learned and used Doc2VecC-
initialized [9] robust word vectors to zero out common and high
frequent words.

4. Lastly, we showed that the sparse word-topic vectors can be pro-
jected into a non-linear local neighborhood preserving a manifold
to learn continuous distributed representations much more effec-
tively and efficiently than SCDV which proves to be useful for
deep learning application.

Overall, we show that: disambiguating the multiple senses of
words based on their context words (adjacent words) can lead to bet-
ter document representations. Sparsity in representations is helpful
for effective and efficient lower-dimensional manifold representation
learning. Representation noise at words’ level has a significant im-
pact on the final downstream tasks.

In section 1, we provided a brief introduction to the problem state-
ment. In section 2 we discuss the related work in document repre-
sentations. In section 3, we describe the proposed algorithm and then
discuss the proposed modifications compared to SCDV in section 4.
We move on to experiments in section 5, followed by conclusions in
section 6.

2 Related Work
For document representation, averaging of word-vectors with an un-
weighted scheme was proposed by [46, 36, 37, 34]. [44] extended the
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previous simple averaging model by tf-idf weighting of word vectors
to form document vectors. [26] proposed paragraph models (PV-DM
and PV-DBOW) similar to word vector models (CBoW and SGNS)
by treating each paragraph as a pseudoword. [47] used a parse tree to
train a Recursive Neural Network (RNN) with supervision. In addi-
tion, several neural network models such as seq2seq models: Recur-
rent Neural Networks (RNN) [33], Long Short Term Memory Net-
works (LSTM) [16] and a hierarchical model: Convolutional Neu-
ral Networks (CNN) [23, 21] were proposed to capture syntax while
representing documents. [50] used supervised learning over the Para-
phrase Dataset (PPDB) to learn Paraphrastic Sentence embeddings
(PSL). Later, [49] also propose an optimization of word embeddings
based on a neural network and a cosine similarity measure.

Several models such as WTM [15], TWE [30], NTSG [30], LTSG
[25], w2v-LDA [39], TV+MeanWV [28], Topic2Vec [40], Gaussian-
LDA [11], Lda2vec [38], ETM [14], KEDR [45], D-ETM [13] and
MvTM [29] combine topic modeling [8] with word vectors to learn
better word and sentence representations. [24] cast the distributional
hypothesis to a sentence level by proposing skip-thought document
vectors. Recently, two deep contextual word embeddings namely
ELMo [41] and BERT [12] were proposed. These contextual em-
beddings perform as state of the art on multiple NLP tasks since
they are very effective in capturing the surrounding context. Inter-
estingly, [27] checks the effect of using multi-sense embeddings on
various NLP tasks. However, our goal is different and aim at effec-
tively using multi-sense words embeddings to learn better document
representations. A hard clustering-based averaging of word vectors
was proposed by [17, 3] to form document vectors. [18] extended the
approach with a better partitioning technique and tried it on other nat-
ural language tasks. [32] further improved the state-of-the-art SCDV
by using fuzzy clustering and tf-idf weighted word averaging. Their
method outperformed earlier models on several NLP tasks.

3 Proposed Algorithm SCDV-MS
In this section, we will describe our new proposed algorithm 1 in
details. The algorithm is similar to SCDV [32], but with important
modifications and has three main components as described below:

3.1 Word Sense Disambiguation (Algo 1: 1 - 6):
We employed the widely-used AdaGram [6] algorithm to disam-
biguate the multi-sense words in our corpora. We chose AdaGram
because it’s a nonparametric Bayesian extension of Skip-gram which
automatically learns the counts of the senses of the multi-sense words
and their sense representations. 7 We first trained the AdaGram algo-
rithm on the training corpora. 8 We used the trained model to anno-
tate the words with the corresponding word senses in all train-test
examples. We then trained the Doc2vecC algorithm on an annotated
corpus to obtain the final multi-sense word vectors i.e. learning one
sense vector for each word sense. Lastly, we obtained the idf values
of words of the vocabulary which we will use as a means for weight-
ing the rare words (Lines 4-6 Algo 1).

3.2 Word Vector Clustering (Algo 1: 6 - 9)
Similar to the SCDV approach, we clustered the word embeddings
using Gaussian Mixture Models (GMM), which is a soft clustering
technique, and obtained the word-cluster assignments probabilities

7 One could also replace AdaGram with [10] and [5]
8 https://github.com/sbos/AdaGram.jl

Algorithm 1: SCDV-MS
Data: Documents Dn, n = 1, . . . , N
Result: Document vectors ~dvDn , n = 1, . . . , N
/* Word Sense Disambiguation */

1 Use adagram for word sense disambiguation;
2 Annotate each word with a sense according to the

neighboring context words;
3 Obtain word vectors ( ~wvi) on annotated corpus using

Doc2VecC;
4 for each word wi ∈ V do
5 obtain idf values, idf(wi), i = 1..|V | ;

/* |V | is the vocabulary */

6 end

/* Word Vector Clustering */

7 Fuzzy clusters ~wv in K clusters;
8 Each word wi and cluster ck, obtain P(ck|wi) ;

9 ~SP(c|wi) = make-sparse( ~P(c|wi));

/* Word Topic Vectors */

10 for each word wi ∈ V do
11 for each cluster ck do
12 ~wcvik = ~wvi × SP(ck|wi);
13 end
14 ~wtvi = idf(wi) ×

⊕K
k=1 ~wcvik ;

/*
⊕

is concatenation */
/* Optional: Manifold Learning */

15 ~rwtvw = manifold-proj( ~wtvw);
16 end

/* SCDV-MS Representation */

17 for n ∈ (1..N) do
/* initialize vectors */

18 ~dvDn = ~0;
19 for word wi in Dn do
20 ~dvDn += ~wtvwi ;
21 end
22 end

P(ck|wi). Additionally, we made use of the fact that GMMs have
an irrelevant noisy tail and made the cluster probability assignment
~P(c|wi) manually sparse by zeroing the values of P(ck|wi). Retain-

ing only the top l maximum P(ck|wi) and zeroing the rest K − l

values results in a sparse word-cluster assignment vector ~SP(c|wi)
for each word. Here, K represents the total number of clusters and
l is the sparsity constant (l << K). One can use different values of
l for each word (wi) depending on the values of P(ck|wi) . How-
ever, in our experiments we did not observe significant performance
difference when l is varied with respect to the words.

SP(ck|wi) =

{
P(ck|wi) if k ∈ {k| argmaxl

k P(ck|wi)}
0 otherwise

(1)

argmaxl
k P(ck|wi) outputs indices of top l maximum assignments.

3.3 Word Topic Vectors (Algo 1: 9 - 16)
Similar to SCDV, for each word wi ∈ V , we created K differ-
ent word-cluster vectors of d dimensions ( ~wcvik) by weighting the
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word’s embedding with sparse probability distribution for the kth

cluster, i.e., SP (ck|wi). Next, we concatenated the K word-cluster
vectors ( ~wcvik) into a word-topic vector ( ~wtvi), which is a K × d
embedding vector. We then weighted it with inverse document fre-
quency (idf(wi)) of wi to obtain word-topic vectors ( ~wtvi). For all
words appearing in a given document Dn, we computed the average
of the corresponding projected lower dimensional word-topic vec-
tors ~wtvi to obtain the document vector ~dvDn . Furthermore, one
can optionally project the ( ~wtvi) into a lower dimensional continu-
ous representation called reduced word topic vectors, ( ~rwtvi), using
manifold learning algorithms, namely Random Projection [2], PCA
[1] and Denoising Autoencoders [48]. We can then use them instead
of ( ~wtvi) for document representation. We call this reduction-based
representation method as R-SCDV-MS. Refer to section 4.1 on man-
ifold learning for more details.

~wcvik = ~wvi × SP(ck|wi) (2)
~wtvi = idf(wi)×⊕K

k=1 ~wcvik (3)

~rwtvi = manifold-proj( ~wtvi) (4)⊕
is the concatenation and manifold-proj is the manifold learning

algorithm we utilized. Figures 2 and 3 show the flow-chart of high
level flow of our proposed SCDV-MS embedding.

4 Discussion on Proposed Modifications
In this section, we will describe the modifications applied to the
SCDV embeddings in details.

4.1 Word Representation: Single Sense vs Multi
Sense

SCDV-MS used a multi-sense approach instead of single sense word
embeddings because SCDV does not disambiguate the senses of the
words based on the context words used in the documents. SCDV-
MS performed an automatic word sense disambiguation using multi-
sense word embeddings according to the context determined by
the neighboring words to resolve cluster ambiguity for polysemous
words. Table 1 shows examples of multi-sense words along with their
fitting context and the prominent words of the assigned clusters.

Figure 1: Effect of sense disambiguation on word cluster assignment
probabilities

Figure 1 shows the effect of sense disambiguation on fuzzy GMM
clustering on the 20NewsGroup dataset. The same word is assigned
to different clusters depending on its context which helps in resolv-
ing the word cluster ambiguities, e.g., without sense disambiguation,
the word ’Subject’ belongs to cluster 13 with probability 0.25 and
cluster 50 with probability 0.65. But after sense disambiguation we
acquire two word embeddings of the word ‘Subject’, i.e., ‘Subject#1’
and ‘Subject#2’. ‘Subject#1’ belongs to cluster 50 with probability

of 0.9 and ‘Subject#2’ belongs to cluster 13 with probability 0.8. So
depending on the context in which word ‘Subject’ is used, the algo-
rithm assigns ‘Subject’ to a single cluster based on its sense; thus
word cluster ambiguity is resolved. We observe similar disambigua-
tion effects for other polysemous words in the corpus.

4.2 Thresholding Word Cluster Assignments
In SCDV, the thresholding is applied to the final document vectors.
However, applying the hard thresholding in an earlier stage in word
cluster assignments (P (ci|w)) results in better heavy tail noise re-
moval and yields more robust representations. Thus, SCDV-MS ap-
plied the hard thresholding directly on the word cluster assignments
instead of the final document representations. Furthermore, apply-
ing sparsity over vocabulary words with fewer dimensions (O(V K))
instead of millions of documents (O(NKd)) results in higher effi-
ciency (Nd >> V ). Here, N is the number documents, V is vo-
cabulary, K is number of clusters, and d is word vector dimensions.
Empirically, on 20NewGroups we observe that about 98% of entries
in word-cluster assignments (P (ci|w)) for all words are close to 0
(< 0.01). For each word on average, the probability of cluster as-
signment (P (ci|w)) for 58 cluster assignments out of 60 (variance of
1.56) is less than 0.01. Thus, applying thresholding at word-cluster
assignment level is reasonable.

4.3 Doc2VecC vs SGNS Representations
In the SCDV approach, the SGNS word vectors represent the com-
mon words (mainly stop words) as non-zero vectors. This makes
the clusters redundant and generates a heavy tail noise. SCDV-MS
addressed this issue by using Doc2VecC [9] which introduces cor-
ruption while doing context addition in word embeddings to help
in learning robust word vector representations. In this approach, the
common words of the corpus are forcefully learned as zeroed vectors.
We observed that using Doc2VecC trained word vectors results in
non-redundant diverse clusters. Thus, using Doc2VecC trained word
vectors not only improves the performance but also reduces the fea-
ture size. There is no running time overhead for Doc2VecC compared
to the SGNS.

4.4 Low Dimensional Manifold Learning
SCDV [32] represents documents as high dimensional sparse vec-
tors. The SCDV approach showed that such vectors are useful for
linear classification models. However, being useful for many down-
stream applications (especially the ones using deep learning mod-
els) requires a continuous low dimensional document representation
similar to word vectors. To overcome this issue, R-SCDV-MS pro-
jected the sparse word-topic vectors into a lower-dimensional mani-
fold which preserves the local neighborhood using simple techniques
such as random projection. Furthermore, the manifold learning is ap-
plied over word vocabularies instead of millions of documents, which
is more efficient. Dimensionality reduction for SCDV-MS is roughly
(O(N

V
)) (where N is the number of documents and V is the size of

vocabulary) faster than SCDV.

5 Experimental Results
Document embeddings obtained using SCDV-MS can be used as di-
rect features for downstream supervised tasks. We experimented with
text classification tasks (see Table 2) to show the effectiveness of our
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Table 1: Examples of multi-sense words along with their context words and the corresponding prominent cluster words

Multi-Sense Words Sentence (Context Words) Prominent Cluster Words
Subject The math subject is a nightmare for many students physics, chemistry, math, science

In anxiety, he sent an email without a subject mail, letter, email, gmail
After promotion, he went to Maldives for spring break vacation, holiday, trip, spring

Break Breaking government websites is common for hackers encryption, cipher, security, privacy
Use break to stop growing recursion loops if, elseif, endif, loop, continue

Unit The S.I. unit of distance is meter calculation, distance, mass, length
Multimeter shows a unit of 5V electronics, KWH, digital, signal

Interest His interest lies in astrophysics information, enthusiasm, question
Bank’s interest rates are controlled by RBI bank, market, finance, investment

Figure 2: Flowchart representing modified ~wtv computation. Figure 3: Flowchart representing final document vector computation.

embeddings. We evaluated the following questions through our ex-
periments.

Table 2: Text classification datasets overview.
Task Dataset #Classes #train / #test #words/doc

Multi-class 20NewsGroup 20 11K / 8K 40-80
Multi-label Reuters-21578 444 13K / 6K 200-400

Q1. Does disambiguating word-cluster assignments using multi-sense
embedding improve classification performance?

Q2. Does hard thresholding over word-cluster assignments improve
performance, space and time complexities?

Q3. Is representational noise reduction using Doc2Vec initialization
effective?

Q4. Can effective lower dimensional manifold be learned from the
sparse high dimensional word topic vectors?

Baselines: We considered the following baselines: Bag-of-Words
(BoW) [19], Bag of Word Vector (BoWV) [17], 9 Sparse Composite
Document Vectors (SCDV) [32], 10 paragraph vectors [26], pmeans
[43], ELMo [42], Topical word embeddings (TWE-1) [31], Neural
Tensor Skip-Gram Model (NTSG-1 to NTSG-3) [30], tf-idf weighted
average word-vector [44] and weighted Bag of Concepts (weight-
BoC) [22], and BERT [12]. In BoC we built topic-document vec-
tors by counting the member words in each topic. For BERT, we re-
ported the results on the unsupervised pre-trained (pr) model because
of a fair comparison to our approach which is also unsupervised. In
Doc2VecC [9] averaging and training the vectors was done jointly
with corruption. Also, in SIF [4] we used the inverse frequency
weights for weighting while averaging word vectors, and finally re-
moved the common components from the average. The results of our
proposed embeddings is represented by SCDV-MS in Tables 5 and 3.

9 https://bit.ly/2X0XfBH
10 https://bit.ly/36NxGZh

We also compared our representation with othe methods, described
in the related work.

The Experimental Setting: We learned the word embeddings with
Doc2VecC using commonly used parameters, e.g., negative sample
size of 10, minimum word frequency of 20, and the window size
of 10. We ensure for usual data cleansing like stop word removal,
lemmetization and stemming for all the baselines. In addition, we
used simple models such as LinearSVM for multi-class classifica-
tion and Logistic regression with a OneVsRest setting for the multi-
label classification tasks so that we can directly compare our re-
sults with the previous approaches which uses the same classifiers.
Similar to SCDV, to tune the hyperparameters, we employed a 5-
fold cross-validation on the F1 score. We also used the Doc2VecC
model [9] to initialize the word embeddings on the annotated cor-
pora for performance improvement. To ensure a fair comparison with
SCDV, we fixed the same number of clusters to 60 and used full co-
variance for GMM clustering for all experiments based on our best
empirical results with cross-validation. We tuned the hard threshold
sparsity constant l from range {3, 5, 7} with cross-validation to se-
lect the best hyper-parameter for making the word cluster assign-
ments sparse. Moreover, we used AdaGram [6] for disambiguating
the sense of multi-sense words using a neighborhood of 5 context
words on both sides, so that the window size is 10. We first ranked
our words based on their tf-idf scores; we then selected a practica-
ble number (top 5000 words) as candidates for the polysemic words.
Next, we selected the true polysemic words by applying AdaGram
on the candidates. 11 The best parameter settings were used to gener-
ate baselines results. We used 200 dimensions for the tf-idf weighted
word-vector model, 400 for the paragraph vector model, 80 topics
and 400 dimensional vectors for TWE/NTSG/LTSG, and 60 topics
and 200 dimensional word vectors for SCDV and BOWV. We re-
ported the average of 5 runs. Our results were robust across multiple

11 https://bit.ly/2Jv6wxX
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runs with a variance of O(10−6).

5.1 Text Classification Results
We evaluated the classifier’s performance on multi-class classifica-
tion using several metrics such as accuracy, macro-averaging preci-
sion, recall, and macro F1-score. Table 3 shows a comparison with
multiple state-of-the-art document representations (the first 7 except
BERT/ELMo are clustering-based, the next 11 topic-word embed-
dings based, the next 6 are simple averaging or topic modeling meth-
ods) on the 20NewsGroup dataset. We also reported the results (mi-
cro F1) on the 20 classes of 20NewsGroup in Table 4. Furthermore,
we evaluated the multi-label classification performance using several
metrics such as Precision@K, nDCG@k [7], Coverage error, Label
ranking average precision score (LRAPS)12 and macro F1-score. Ta-
ble 5 shows the results on the Reuters dataset.

Table 3: Performance on multi-class classification.

Model Accuracy Precision Recall F-measure
SCDV-MS 86.19 86.20 86.18 86.16

R-SCDV-MS 84.9 84.9 84.9 84.9
BERT (pr)[12] 84.9 84.9 85.0 85.0

SCDV [32] 84.6 84.6 84.5 84.6
RandBin 83.9 83.99 83 .9 83.76

BoWV [17] 81.6 81.1 81.1 80.9
pmeans [43] 81.9 81.9 81.9 81.5

Doc2VecC [9] 84.0 84.1 84.1 84.0
BoE [20] 83.1 83.1 83.1 83.1

NTSG-2 [30] 82.5 83.7 82.8 82.4
LTSG [25] 82.8 82.4 81.8 81.8
WTM [15] 80.9 80.3 80.3 80.0
ELMo [42] 74.1 74.0 74.1 73.9

w2v-LDA [39] 77.7 77.4 77.2 76.9
TV+MeanWV [28] 72.2 71.8 71.5 71.6

MvTM [29] 72.2 71.8 71.5 71.6
TWE-1 [31] 81.5 81.2 80.6 80.6
lda2Vec [38] 81.3 81.4 80.4 80.5

lda [8] 72.2 70.8 70.7 70.0
weight-AvgVec [44] 81.9 81.7 81.9 81.7

BoW [44] 79.7 79.5 79.0 79.0
weight-BOC [44] 71.8 71.3 71.8 71.4
PV-DBoW [26] 75.4 74.9 74.3 74.3

PV-DM [26] 72.4 72.1 71.5 71.5

Datasets: We evaluated our approach by running multi-class clas-
sification experiments on the 20NewsGroup dataset, 13 and multi-
label classification experiments on the Reuters-21578 dataset. 14 For
more details on dataset statistics refer to Table 2. We used script for
datasets preprocessing. 15

Results and Analysis. We observed that our modified embeddings
(SCDV-MS) with Doc2VecC-initialized word vectors, direct thresh-
olding on word cluster assignments, and multi-sense disambigua-
tion using AdaGram outperforms all earlier embeddings on both the
20NewsGroup and the Reuters datasets. From class-wise results in
Table 4, we notice a consistent performance improvement where we
are outperforming SCDV in 18 out of 20 classes. It should be noted
that the improvement on Reuters is not as great as the 20NewsGroup
dataset due to the fact that the number of unique polysemic words

12 Section 3.3.3.2 of https://goo.gl/4GrR3M
13 http://qwone.com/˜jason/20Newsgroups/
14 https://goo.gl/NrOfu
15 https://bit.ly/2PXDdXj

Table 4: Class-wise F1-Score on the 20newsgroup dataset with dif-
ferent document representations.

Class Name SCDV SCDV-MS R-SCDV-MS
alt.atheism 80.14 81.35 80.39

comp.graphics 78.99 76.84 76.95
comp.os.ms-windows.misc 75.65 77.65 78.28
comp.sys.ibm.pc.hardware 72.08 73.43 68.38

comp.sys.mac.hardware 82.15 86.82 80.16
comp.windows.x 81.8 82.97 83.27

misc.forsale 82.8 85.13 84.99
rec.autos 89.06 92.53 91.77

rec.motorcycles 94.27 96.11 94.27
rec.sport.baseball 93.57 96.47 93.68
rec.sport.hockey 97.27 96.78 96.41

sci.crypt 93.1 92.82 93.5
sci.electronics 77.38 77.45 74.25

sci.med 88.58 92.30 91.57
sci.space 90.33 91.40 90.71

soc.religion.christian 89.56 89.97 89.76
talk.politics.guns 80.69 84.18 83.05

talk.politics.mideast 95.96 95.95 96.1
talk.politics.misc 69.33 73.49 73.67
talk.religion.misc 65.53 65.54 60.48

Table 5: Performance on various metrics for multi-label classification
on the Reuters dataset.

Model Prec
@1

Prec
@5

nDCG
@5

Cover.
Error

LRAPS F1
Score

SCDV-MS 95.06 37.56 50.20 5.87 94.21 82.71
R-SCDV-MS 93.56 37.00 49.47 6.74 92.96 81.94

BERT (pr) 93.8 37 49.6 6.3 93.1 81.9
SCDV 94.00 37.05 49.6 6.65 93.34 81.77

Doc2VecC 93.45 36.86 49.28 6.83 92.66 81.29
pmeans 93.29 36.65 48.95 7.66 91.72 77.81
BoWV 92.90 36.14 48.55 8.16 91.46 79.16
TWE-1 90.91 35.49 47.54 8.16 91.46 79.16
PV-DM 87.54 33.24 44.21 13.15 86.21 70.24

PV-DBoW 88.78 34.51 46.42 11.28 87.43 73.68
tfidf AvgVec 89.33 35.04 46.83 9.42 87.90 71.97

Table 6: Ablation Study reporting F1 scores. In ±x, x is the variance
across several runs.

Ablation (w/o) 20NewsGroup Reuters
Sparsity 85.28 ± 0.002 82.17 ± 0.001

Doc2VecC 85.41 ± 0.001 82.08 ± 0.002
MultiSense 85.16 ± 0.001 82.43 ± 0.001

All 84.61 ± 0.004 81.77 ± 0.003
None 86.16 ± 0.002 82.71 ± 0.002

Table 7: Performance in terms of accuracy with various dimensional-
ity reduction methods on the 20NewsGroup dataset. Similar results
were acquired for precision, recall, and F1 score.

Dimension Random
Projection

PCA
(SubSpace)

Autoencoder

200 78.97 80.62 81.44
500 82.19 83.14 83.83
1000 83.75 83.80 84.31
2000 84.47 84.34 84.80
3000 84.94 84.86 84.90
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Figure 4: Percentage loss in F1-Score (%RL)
after Random Projection-based ~wtv dimen-
sionality reduction on 20NewsGroup.

Figure 5: Percentage loss in F1-Score (%RL)
after Autoencoder-based ~wtv dimensionality
reduction on 20NewsGroup.

Figure 6: Percentage loss in F1-Score (%RL)
after PCA (Subspace)-based ~wtv dimen-
sionality reduction on 20NewsGroup.

Table 8: Performance of Convolutional Neural Network (CNN) for multi-class text classification on 20NewsGroup with the original word
embeddings (200 dimensions) and the reduced word topic vectors (2000 dimensions). In ±x, x is the variance across several runs.

Embedding Dimen Accuracy Precision Recall F1-Score
Word2Vec 200 82.07 ± 0.003 82.22 ± 0.005 81.9 ± 0.004 81.9 ± 0.005

Reduce Word Topic Vector 200 82.13 ± 0.002 82.36 ± 0.003 82.06 + ± 0.003 82.05 ± 0.003
Word2Vec 2000 82.31 ± 0.004 82.87 ± 0.005 82.31 ± 0.004 82.38 ± 0.005

Reduce Word Topic Vector 2000 82.85 ± 0.001 83.18 ± 0.004 82.64 ± 0.002 82.68 ± 0.003

Table 9: Time and Space complexity analysis of embedding methods. Bold values represent the best results.

Method Vocab ~wtv
Dim

~wtv
Sparsity(%)

~dv
Sparsity(%)

Cluster
(sec)

Feature
(µ sec)

Predict
(µ sec)

Training
(min)

Model
Size (KB)

~wtv
Space(MB)

SCDV 15591 12000 1 81 242 2.56 119 82 1900 748
SCDV-MS 25466 12000 98 74 569 0.06 111 79 1900 71

R-SCDV-MS 25466 2000 0 0 576 0.86 14 66 333 203

Table 10: PCA based subspace rank reduction criteria.

Red-Dim Subspace Rank Reduction Criteria
500 rank > 10 reduce to 10 else the original rank
1000 rank > 20 reduce to 15 else the original rank
2000 rank > 100 reduce to 30 else the original rank
3000 rank > 100 reduce to 50 else the original rank

Table 11: Performance on reduced word topic vectors using several
reduction techniques on various dimensions for multi-label classifi-
cation – the Reuters dataset.

Method Dimen Prec@1 Prec nDCG Cover LRAP F1
nDCG @5 @5 Error Score

500 92.14 36.53 48.74 8.02 91.34 79.96
Auto 1000 92.95 36.82 49.17 7.14 92.32 81.05

Encoder 2000 93.39 36.95 49.39 6.87 92.75 81.65
3000 93.56 37 49.47 6.74 92.96 81.94
500 91.98 36.26 48.47 7.41 91 79.03

Random 1000 92.59 36.62 48.91 6.98 91.84 80.39
Projection 2000 93.39 36.83 49.26 6.95 92.59 81.12

3000 93.32 36.91 49.33 6.78 92.75 81.39
500 90.73 36.03 48.06 8.40 90.11 78.06

PCA 1000 92.15 36.55 48.78 7.44 91.48 80
(SubSpace) 2000 92.95 36.87 49.22 6.86 92.30 81.2

3000 93.38 36.97 49.4 6.69 92.8 81.48

Table 12: Time complexity for dimensionality reduction of word topic
vectors to a 2000-dimension dense representation using various re-
duction techniques on 20NewsGroup

Method Random
Projection

PCA
(SubSpace)

Autoencoder

Time (sec) 35 66 608

in Reuters (250) is significantly fewer than 20NewsGroup (1000);
thus each word is assigned to only one cluster. Therefore, the use of
AdaGram for sense disambiguation and the sparsity operation over
the word-cluster assignments does not improve the performance by
a large margin. We verified this claim in the ablation study below.
We can conclude that our modifications yield notable improvements
if the dataset has more multi-sense words.

Ablation Study: To understand the contributions of each of the
three modifications, we compared five different versions of our em-
beddings. In the first version, we ablated the sparsity of the word-
cluster assignments and applied sparsity directly on the document
vectors similar to SCDV while keeping the Doc2VecC multi-sense
word embeddings and the sense annotated corpus intact. In the sec-
ond version, we ablated the Doc2VecC embeddings with normal
SGNS embedding while keeping the word topic vector sparsity, and
the sense annotated corpus intact. In the third version, we ablated
multi-sense embeddings and the annotation of the corpus while keep-
ing the Doc2VecC word training and the word topic vector sparsity
intact. We also compared our results with an all ablation approach,
i.e., the SCDV baseline and a none ablation approach, i.e., our new
embeddings in SCDV-MS. Table 6 shows the results obtained with
ablation on 20NewsGroup and Reuters datasets. We obtained the
best performance with the none ablation approach, i.e., SCDV-MS.
Thus, we can conclude that all three modifications is needed to yield
the best performance. Multi-sense is the most pivotal improvement
for 20newsgroup since by ablating it we observed the lowest per-
formance out of ablating each of the three modifications. Whereas
on the Reuters dataset, multi-sense was the least important because
of fewer multi-sense words. On Reuters, the noise removal at word
level representations was the most important.

Comparison with Contextual Embeddings: SCDV-MS is a lot
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simpler than unsupervised contextual embeddings like BERT (pr)
and ELMo, but it outperformed them. We presume that SCDV-MS’s
concentration on capturing semantics (local and global) in sparse
high dimension representations instead of capturing both semantics
and syntax in single lower dimensional continuous representations
(what BERT does) is the reason behind our method’s superior per-
formance. Because understanding syntax is not as influential as se-
mantics in our classification and similarity tasks.

5.2 Lower Dimensional Manifold Learning

We tried three popular lower-dimensional manifold learning algo-
rithms to reduce high dimensional sparse word topic vectors to lower-
dimensional word embeddings, namely Random Projection [2], PCA
(Subspace) [1], and Autoencoders [48]. For PCA (Subspace), we ob-
served that not all subspaces (200 dimensions) of word topic vectors
have a complete full rank (200). Most of the subspaces were of ranks
much smaller than 200 (rank ≤ 200). Therefore, we applied PCA
on each of 200 dimension subspaces separately and concatenated the
subspace reduced vectors. We refer to Table 10 as the criteria for
PCA-based subspace rank reduction. For Auto-encoders, we used
the standard architecture for reducing the word topic vectors from
12000 to 2000 dimensions, through a intermediate layer of 4000 di-
mensions (see Figure 7). We used the mean squared error minimiza-
tion, tanh non-linear activation, and Adam optimization routine for
training the autoencoders. We used the initial learning rate of 0.001,
β1 = 0.9 and β2 = 0.999 for Adam optimization routine.

Figure 7: The AutoEncoder architecture (12000 − 4000 − 2000 −
4000 − 12000) used to reduce the word topic vectors from 12000
dimensions to 2000 dimensions.

Results: Table 7 shows the performance of the dimensionality reduc-
tion techniques such as Random Projection, PCA (Subspace), and
Autoencoders on the 20NewsGroup dataset. We observed that au-
toencoders outperform other reduction methods because they easily
fit any non-linear function. Also, we observed only a small decrease
of 1% in the performance after a reduction to 2000 dimensions with
most methods. This decrease is associated to loss due to data com-
pression and can be explained by information theory. However, word
topic vectors can be efficiently projected into a lower-dimensional
manifold without a significant loss in the performance. We compared
the percentage loss in performance (F1-Score) %RL = Orignal−Reduced

Orignal

on text classification with a dimension-reduced ~wtv through random
projection for both SCDV and SCDV-MS on 20newsgroup. In Fig-
ures 4, 5 and 6 we observe that the %RL loss in SCDV-MS’s F1-
Score is distinctively less compared to SCDV for all reduction meth-
ods. Furthermore, we observed that the reduction time for SCDV-
MS was shorter than SCDV, particularly for random projection, be-
cause SCDV-MS ~wtv are sparser than SCDV ~wtv. We also tried a
direct reduction of final document representations which yielded a

poor performance and took a longer reduction time for both embed-
dings. Overall, reducing SCDV-MS ~wtv is much more effective than
reducing SCDV ~wtv or document vectors. Similar observations for a
multi-label classification task on the Reuters dataset, see Table 11.

Application to Deep Learning: One significance of our reduction
of ~wtv is that they can be used as direct word embeddings in popular
deep learning architectures such as CNNs on downstream classifica-
tion tasks. We used the same architecture (see the supplementary ma-
terial, Figure 8 16) for both embeddings. Employing CNN, our results
outperformed the original word embeddings of the same dimension
for the 20NewsGroup classification task, shown in Table 8.

5.3 Time and Space Complexity
Table 9 illustrates empirical results for time and space complexities
on SCDV (12000 dimensions), SCDV-MS (12000 dimensions) and
reduced R-SCDV-MS (2000 dimensions).

Feature Formation Time: Due to the direct thresholding of word
cluster assignments in SCDV-MS, the word topic vectors ( ~wtv) are
extremely sparse. SCDV-MS ~wtv has only 2% of active attributes
(98% sparse), whereas SCDV ~wtv has 99% of active attributes (only
1% sparse). Therefore, we can use an efficient sparse operation
(sparse addition and multiplication) over sparse vectors to speedup
feature formation. We observed that by adding sparsity we can re-
duce the feature formation time by a significant factor of 43.

Overall Prediction Time: Overall, due to enhanced feature forma-
tion and reduced ~wtv loading time, SCDV-MS will predict faster
compared to the original SCDV. However, we observed an insignifi-
cant difference in the prediction time and model size as SCDV spar-
sifies the final document vectors (both equally sparse). Furthermore,
after reducing the SCDV-MS ~wtv to 2000-dense dimension features
using auto-encoders, we observed a distinctive reduction of 8.5 times
in the prediction time. One can directly store the reduced ~wtv for the
complete vocabulary instead of the reduction model. Refer to Table
12 for SCDV-MS ~wtv reduction timing. Furthermore, one can di-
rectly also reduce the words appearing in the documents i.e. use a
real-time reduction model during prediction.

Vector Space Complexity, Training Time, and Model Size: We
only require 0.1 of the original space to store sparse ~wtv. We
achieved these improvements despite having 1.63 times of the size
of the original vocabulary due to multi-sense word embeddings. The
projected ~wtv is 3 times larger than the ~wtv of SCDV-MS; however,
it is 3.7 times smaller than the ~wtv in SCDV. SCDV is marginally
(1.1 times) sparser than SCDV-MS due to manual thresholding of
document vectors. SCDV-MS also has a slightly faster training time
compared to the original SCDV. We also observed that our train-
ing model on reduced vectors (R-SCDV-MS) is 6 times smaller than
SCDV, and the training process is 1.25 times faster than SCDV. In
comparision to pre-trained BERT which uses 12-layer-768-hidden -
12-heads in total 110M parameters which amount to 16GB RAM
size, our model, including embeddings, uses 80MB of total RAM.

6 Conclusion
In this paper, we proposed several novel modifications to overcome
the shortcomings of SCDV, a state-of-the-art document embedding
method. Our proposed SCDV-MS, outperformed the previous em-
bedding (including SCDV and BERT (pr)) on the downstream tasks

16 https://bit.ly/33473wk
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of text classification. Overall, we have shown that disambiguating
multi-sense words based on context words (adjacent words) can lead
to better document representations. Sparsity in representation is help-
ful for effective and efficient lower-dimensional manifold represen-
tation learning. Representation noise in words level can have a sig-
nificant impact on the downstream tasks.
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