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Abstract. Multi-label classification deals with problems where
each of the data instances has several labels associated with it. Al-
though many ensemble-based approaches for multi-label classifica-
tion have been proposed, several of them do not take into account
intrinsic characteristics of the data during their design. In this paper
we present a cooperative coevolutionary algorithm which considers
such specific characteristics to build an ensemble of accurate and di-
verse multi-label classifiers. The algorithm evolves several subpop-
ulations simultaneously, each using a different subset of the training
data. Also, each individual is focused only on a small subset of la-
bels. These two characteristics provide greater diversity of members
to generate the ensemble. As it evolves separate members, we also
define a procedure to build an ensemble given the individuals. The
experimental study comparing the proposed method to the state-of-
the-art in multi-label classification using thirteen datasets and five
evaluation metrics demonstrated that the developed cooperative co-
evolutionary algorithm performed consistently and statistically better
than the other methods.

1 INTRODUCTION

Multi-Label Classification (MLC) is a classification paradigm capa-
ble of dealing with problems where each of the instances of the data
may have several labels associated with it simultaneously, unlike tra-
ditional classification, where each example has only one class asso-
ciated with it. For example, in medical diagnosis, a patient can have
a few diseases at the same time [21]. The MLC paradigm has been
successfully applied not only to medically related problems, but also
to multimedia annotation [23], legal documents categorization [11],
and prediction of sub-cellular locations of proteins [27]. The fact of
dealing with several labels simultaneously, leads to new challenges
that need to be tackled, such as modeling the dependencies among
labels, and dealing with the data imbalance and high-dimensionality
of the output space.

Existing MLC methods are focused on dealing with some or all
of these challenges [20, 25]. We focus on the Ensembles of Multi-
Label Classifiers (EMLCs), which combine the predictions of many
multi-label classifiers, which leads to better performance [20, 18, 9].
Although ensemble models outperform single classifiers, the classi-
fiers combined into the ensemble should not only be accurate but
also diverse [26, 1]. Further, although EMLCs are usually able to
deal with the different characteristics of the multi-labeled data, such
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as the relationship among labels, imbalance, and high dimensional-
ity of the output space, many of them do not consider all of them
when building the ensemble [13]. For example, RAndom k-labELset
(RAkEL) [25] is able to deal with the relationship among labels, but
it just selects random subsets of labels, without considering any of
the characteristics of the data for selecting them (more about it in
Section 2.2).

One of the ways that have been successfully used for building en-
semble learners is the use of Evolutionary Algorithms (EAs) [14, 13].
EAs are biology-inspired search algorithms [4], and they provide
an optimal framework for solving the problem of the member se-
lection for the ensemble. Specifically, the Evolutionary Multi-label
Ensemble (EME) method [13] proposes an evolutionary algorithm
to build EMLCs where each of the individuals of the population is
an EMLC. EME not only deals with the three main characteristics
of multi-label data, but takes them into account when building the
ensemble. Further, the fact of evolving the ensembles toward a fit-
ness function based on both the performance and the diversity of the
ensemble results in its outperforming to other state-of-the-art MLC
methods.

Although classic EAs have shown good performance in solving
optimization problems, several extensions of EAs have been pro-
posed to improve their performance; example are Cooperative Co-
Evolutionary Algorithms (CCEAs) [16]. The main difference be-
tween EAs and CCEAs is that while in EAs there is just one pop-
ulation of individuals, in CCEAs there are several subpopulations at
the same time. Also, individuals in an EA usually represent a full so-
lution to the problem, while in CCEAs, the individuals of each sub-
population usually represent only a partial solution to the problem;
the final solution is obtained by combination of individuals from sev-
eral subpopulations. Further, in CCEAs, individuals not only com-
pete among them (as in traditional EAs), but also cooperate among
them, for example either obtaining a full solution as combination of
some of the individuals, or sharing useful information among sub-
populations.

CCEAs were first proposed because of the need for representing
and evolving complex structures. Taking into account the complexity
and difficulty of selecting the most appropriate members for the en-
semble, the aim of this paper is to propose a CCEA for the generation
of EMLCs. The method focuses on building an EMLC where each
individual is a different member of the ensemble (unlike in EME,
where each individual is the entire ensemble), and where each mem-
ber is focused only on a small subset of the labels. Further, individ-
uals of each subpopulation use a different subset of the data. The
fact of focusing each individual only on a subset of labels allows
the model to take into account the relationship among labels but in a
less complex way. This, plus the use of different subpopulations over
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different data subsets allows for greater diversity for the ensemble.
As each individual is a different member of the ensemble, we also
propose a method for communicating between subpopulations and
building the final solution, the EMLC.

The experimental study carried out over thirteen multi-label
datasets and using five evaluation metrics demonstrated that the pro-
posed CCEA performed more consistently and statistically better
than the state-of-the-art EMLCs.

The rest of the article is organized as follows: Section 2 provides
background and describes the related MLC work; Section 3 presents
the CCEA for building EMLCs; Section 4 describes the experimental
studies carried out; Section 5 presents and discusses the results; and
Section 6 ends with conclusions.

2 RELATED WORK
In this section, we first formally define MLC, and then present state-
of-the-art EMLCs.

2.1 Formal definition of MLC
Let X = X1 × · · · × Xd be the d-dimensional input space, and
Y = {λ1, λ2, . . . , λq} the output space composed by q > 1 la-
bels. Let D be a multi-label dataset composed of m instances, as
D = {(xi, Yi)|1 ≤ i ≤ m}, where each multi-label instance is com-
posed by an input feature vector x ∈ X and a set of relevant labels
associated with it Y ⊆ Y . The goal of MLC is to construct a pre-
dictive model able to provide a set of relevant labels for an unknown
instance. Thus, for each x, a bipartition

(
Ŷ , Ŷ

)
of the label space

Y is provided, where Ŷ is the set of relevant labels and Ŷ the set of
irrelevant ones.

Further, an EMLC is defined as a set of n multi-label classifiers,
each of them providing prediction b̂j = { ˆbj1, ˆbj2, . . . , ˆbjq} for all
(or part of) the labels. If each model predicts bipartitions, each bj
is 1 if the label is predicted as relevant and 0 otherwise; however,
each of them could also provide confidences, being each bj a value
in [0, 1] range indicating the likelihood of each label to be relevant
or not. Then, these predictions are combined in some way; majority
voting is the most used but there are several other combining methods
[6].

2.2 Ensembles of Multi-Label Classifiers
MLC algorithms are categorized into three groups: problem transfor-
mation, algorithm adaptation, and EMLCs [7]. Problem transforma-
tion methods transform the multi-label problem into one or several
single-label problems, which are then solved using traditional clas-
sification methods. Algorithm adaptation methods adapt traditional
classification methods to directly handle multi-label data, without the
need of transforming the dataset. Finally, EMLCs are methods that
combine the predictions of several multi-label classifiers. Given the
better performance of ensemble methods over simpler ones, we fo-
cus attention on the EMLCs. A thorough description of EMLCs can
be found on [12].

Ensemble of Binary Relevances (EBR) [20] is based on Binary
Relevance (BR) method [24]. BR builds q independent binary mod-
els, one for each of the labels, and thus is not able to model depen-
dencies among them. EBR still is not able to model these dependen-
cies, but tries to improve the performance of BR by combining n BR
models, each of them built over a different subset of training data.

Ensemble of Classifier Chains (ECC) combines the predictions of
several Classifier Chains (CC) [20]. Each of the CC builds q binary
models but in this case they are linked in such a way that the pre-
dictions of previous labels in the chain are introduced as additional
input features, being able to model some of the dependencies among
the labels. ECC, on the other hand, consist of n CCs each built over
a different subset of the training dataset and with a different random
chain. Although able to model some of the dependencies among la-
bels, ECC does not consider these relationships in building the en-
semble, e.g., to select the chains.

Ensemble of Pruned Sets (EPS) is built on top of the Pruned Sets
(PS) method [19]. PS is an extension of Label Powerset (LP) [22],
which transforms the multi-label problem into a multi-class one,
where each of the combinations of labels is considered as a differ-
ent class. PS works as LP but it prunes the classes whose frequency
is below a given threshold, reducing imbalance. EPS is built by com-
bining n PS models, each of them built over different subsets of the
training data. Therefore, EPS considers both the imbalance and di-
mensionality of the output space while building the models; it prunes
the infrequent labelsets to obtain less complex models.

RAndom k-labELsets (RAkEL) [25] builds an ensemble of LP
methods, where each of them is only focused in a small random sub-
set of k labels (a.k.a. k-labelset). The fact of partitioning the label
space into smaller subspaces makes RAkEL able to model the rela-
tionships among labels, but deals with less imbalanced and complex
problems than when all labels are considered at a time. Although
able to deal with these relationships, it does not take them into ac-
count when building the ensemble, for example, to select subsets of
more related labels.

Finally, Evolutionary Multi-label Ensemble (EME) [13] is an evo-
lutionary algorithm to automatically design EMLCs. In EME, each of
the individuals of the population is a complete EMLC, where the op-
eration of the EMLC is similar to RAkEL. However, unlike RAkEL,
EME does not just select the k-labelsets randomly, but it evolves to-
wards more promising combinations of labels in each member as
well as better combinations of members into the ensemble, leading
to an improvement of performance of RAkEL and other state-of-the-
art methods. The fact of evolving the entire ensemble as an indi-
vidual not only made EME computationally more complex but also
more difficult to converge to a better solution than if members were
evolved independently.

3 COOPERATIVE COEVOLUTIONARY
ALGORITHM

In this section, we describe the proposed CCEA for building EMLCs.
First, we briefly describe the structure and operation of the EMLC
generated. Then, we present the CCEA, describing its main steps,
representation and initialization of individuals and subpopulations,
the way subpopulations communicate, genetic operators, fitness
function, and finally, the method used to generate the EMLC.

3.1 Structure of the EMLC
The EMLC obtained in the CCEA consists of n members, each of
them considering only a small subsets of k labels. In this way, each
member of the ensemble is able to model the compound dependen-
cies among its k-labelset, leading to less complex and less imbal-
anced models than when the full set of labels is used. Although any
multi-label classifier can be used at each member, we use LP as in
[25] and [13].
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For an unseen instance, each member gives a bipartition for each
of the labels in its k-labelset. Figure 1 shows an example of the pre-
diction phase of the EMLC for a given instance. Suppose for example
that the first classifier is focused on learning labels λ2, λ3, and λ6, so
it gives prediction for only these labels. Then, predictions of all clas-
sifiers are gathered and the ratio of positive predictions for each label
is calculated; if it is greater than a threshold t, the final prediction of
the EMLC is positive, and negative otherwise.

-	1	0	-	-	0	-	-MLC1

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

1	-	-	-	0	1	-	-MLC2

......

-	-	0	-	-	1	-	1MLCn

-	0	-	1	-	-	0	-MLC3

3
/3

2
/4

0
/5

2
/3

1
/4

2
/3

0
/2

2
/3

1	1	0	1	0	1	0	1
t	=	0.5

Figure 1: Example of the prediction phase of the EMLC.

3.2 Individuals and initialization

Each individual represents not only the subset of labels that it consid-
ers, but also the subpopulation to which it belongs. Therefore, each
individual is represented as a binary array, where genes to 1 indicate
that the label belongs to its k-labelset and genes to 0 that it does not
belong; and also with an integer value indicating the index of the
subpopulation to which this individual belongs. In Figure 2 we show
some examples of individuals. We can see that there are two individ-
uals belonging to each subpopulation si, i ∈ {1, 2, 3}. For example,
individual I1,1 will be focused on predicting labels λ2, λ3, and λ6,
and built over the subset of the data corresponding to subpopulation
s1. Note that individuals I1,1 and I3,1, although they focus on pre-
dicting the same labels, they are different since they are built over
different subsets of the data.

1	0	1	1	0	0	1	0	0

1	1	0	0	0	1	1	0	0

2	0	0	1	1	0	0	0	1

2	0	1	0	0	1	0	1	0

3	0	1	1	0	0	1	0	0

3	1	0	0	1	0	0	0	1

k-labelsetsi

I1,1

I1,2

I2,1

I2,2

I3,1

I3,2

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

Figure 2: Example of individuals of the CCEA. Each individual in-
cludes both the index of the subpopulation as well as the labels
present in its k-labelset.

At the beginning of evolution, a subset of the data is generated for
each subpopulation, in such a way that all individuals of the same
subpopulation use always the same data. The individuals are initial-
ized independently for each subpopulation.

Although all labels are required to appear a minimum number of
times in each subpopulation, ensuring the use of minority labels, we

use their frequency as a proxy of their importance in this process. The
expected number of appearances of each label in each subpopulation
is calculated using Equation 1, where fl is the frequency of a given
label λl, and r is the number of remaining appearances after sharing
the minimum number of appearances amin for each label, calculated
as r = k × subpopSize− q × amin. Note that k × subpopSize is
the total number of active bits in the subpopulation. The number of
times that a label could appear in the initial subpopulation is upper
bounded by the size of the subpopulation.

al = max

(
subpopSize, amin +

∥∥∥∥∥ fl∑q
j=1 fj

× r

∥∥∥∥∥
)

(1)

Individuals are created by activating k randomly selected bits,
where labels with higher value of al have higher chance to be acti-
vated, thus making sure that more frequent labels appear more times
in the initial subpopulations. Note that these frequencies are calcu-
lated for each subpopulation.

3.3 Steps of the CCEA

Figure 3 shows the main steps of the CCEA. Boxes with double
lines indicate that the process is performed independently for each
subpopulation. At the beginning, ns samples of the original train-
ing data are selected, where ns is the number of subpopulations in
the algorithm. Then, each subpopulation si is initialized (see Section
3.2), and the individuals are evaluated (see Section 3.6). While the
maximum number of generations ng is not reached, individuals are
selected by tournament selection, crossover and mutation operators
are applied with pc and pm probabilities respectively (see Section
3.5), new individuals are evaluated, and the subpopulations for next
generation are selected following the same process to generate the
ensemble (see Section 3.7). Then, subpopulations communicate be-
tween them each ngc generations, obtaining an ensemble (and stor-
ing the best so far), and exchanging information between subpopula-
tions (see Section 3.4). The whole process of communication among
subpopulations is represented with a dashed box in the figure. Fi-
nally, when the maximum number of generations is reached, the best
EMLC is returned as the best solution.

3.4 Communication between subpopulations

The communication between subpopulations have two objectives: I)
generate a complete solution to the problem, i.e., an EMLC, given
the individuals of all subpopulations, and II) transfer good genetic
material of individuals from one subpopulation to another at some
iterations of the CCEA. This communication is not performed at each
iteration, but after ngc iterations; this allows each subpopulation to
evolve their own individuals before putting them together with the
rest of subpopulations.

In order to generate an EMLC, individuals of all subpopulations
are joined, and then the process described in Section 3.7 is followed.
After the EMLC is built, it is evaluated using the entire training
dataset; it is stored if it is the best ensemble generated so far.

Communication between subpopulations occurs also to exchange
information between subpopulations. For that, after ngc generations,
individuals of each subpopulation si are applied specific crossover
and mutation operators, with pcc and pmc probabilities respec-
tively (see Section 3.5). If one individual from si is selected for
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Start

Sample	training	data

si					InitSubpopulation

Evaluate(si)

g	<	ng

ci					Tournament(si)

ApplyOperators(ci,	pc,	pm)

Evaluate(ci)

si					Update(si,	ci)

(g%ngc)	==	0

e			generateEnsemble(s)

ApplyOperators(si,	pcc,	pmc)

Evaluate(si)

fit(e)	>	fit(bE)

bE					e

si					Update(si) return(bE)

Yes

No

End

No

Yes

No

Yes

Communication

Figure 3: Main steps of the CCEA. Boxes with double lines indicate
that the process is performed independently for each subpopulation.
The region within the dashed line indicates the communication be-
tween subpopulations.

crossover operator, a random individual from a different subpopu-
lation sj , i 6= j is also selected, thus exchanging genetic material be-
tween individuals of different subpopulations. If mutation operator
is used, it changes the index of subpopulation without modifying the
rest of the genes of the individual; this enables to train an individual
with the same k-labelset but in another subpopulation.

3.5 Genetic operators
In this section, we define the crossover and mutation operators used.
For that, we need to look at two possible scenarios: the first scenario
is when genetic operators are applied to individuals of a given sub-
population, so the index of subpopulation of the individual does not
change; the second is when operators are applied to communicate
subpopulations, so the index of the individual is considered and it
could be modified.

3.5.1 Crossover operator

Given two individuals I1 and I2, the crossover operator swaps in-
formation relative to their k-labelsets. The child individuals will in-
herit the subpopulation index of their parents so, independently of
the scenario, its operation is the same. In Figure 4, an example of the
crossover operator is shown when individuals belongs to different
subpopulations. It would be exactly the same if they both belonged
to the same subpopulation.

First, the crossover operator creates two sets ds1 and ds2 with the
positions of genes that are activated in one individual but not in the
other (Figure 4a). These sets are shuffled and divided by the midpoint
(Figure 4b). Then, two new sets ds1′ and ds2′ are created with one
half of each previous sets (Figure 4c). Finally, crossed individuals I ′1

and I ′2 are created by copying the genes that were identical in both
parents and activating the genes of their corresponding sets (Figure
4d). New individuals are always feasible and contain genetic material
of both parents.

I1

I2

ds1	=	{2,	3}

ds2	=	{1,	5}2	1	0	0	0	1	1	0	0

1	0	1	1	0	0	1	0	0

ds1	=	{3,	2}

ds2	=	{1,	5}

ds'1	=	{3,	5}

ds'2	=	{1,	2}

I'1

I'2

ds'1	=	{3,	5}

ds'2	=	{1,	2}2	1	1	0	0	0	1	0	0

1	0	0	1	0	1	1	0	0

a)

b)

c)

d)

Figure 4: Example of crossover operator.

3.5.2 Mutation operators

We define different mutation operators for each scenario. In both
cases, feasible individuals are always obtained after mutation.

The so-called label mutator is used when the mutation operator
is applied for a specific subpopulation (Figure 5a). It aims to mod-
ify the k-labelset of an individual, randomly selecting one active and
one inactive gene, and swapping their values. Unlike the crossover
operator, which tries to find new subsets of labels by combining in-
formation of existing individuals, mutation operator modifies the k-
labelset of a given individual with randomly created genetic material,
thus looking for new combinations of labels.

If the mutation operator is applied to communicating subpopula-
tions, we use the subpopulation mutator. In this case, the k-labelset
is not modified, but the index of the subpopulation is (Figure 5b).
This mutation operator selects a random different subpopulation for
the individual, allowing to learn the same combination of labels from
the point of view of other subpopulation.

1	0	1	1	0	0	1	0	0

1	0	1	0	0	0	1	1	0
(a) Label mutator

1	0	1	1	0	0	1	0	0

2	0	1	1	0	0	1	0	0
(b) Subpopulation mutator

Figure 5: Mutation operators.

3.6 Fitness function
In order to evaluate the fitness of individuals, the correspond-
ing multi-label classifier is built and the Example-based FMeasure
(ExF), which is presented in Equation 2, is calculated [8]. FMeasure
is a robust evaluation metric used to evaluate classification models
in imbalanced scenarios [10]. Although there are several approaches
to calculate FMeasure in MLC, ExF evaluates the prediction of each
instance as a whole, therefore being able to capture the relationship
among labels in its calculation. As our approach is focused on mod-
eling label dependencies of small subsets of labels, we are using ExF
as the fitness function.
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↑ ExF =
1

m

m∑
i=1

2|Ŷi ∩ Yi|
|Ŷi|+ |Yi|

(2)

Each individual is built using the corresponding training data of its
subpopulation. The ExF is calculated over the full training dataset,
which has two objectives: I) individuals are evaluated over a dataset
including unknown instances, allowing to check its generalization
ability, and II) all individuals are evaluated over the same data in-
dependently of their training datasets, therefore giving a better ap-
proximation of how each individual will perform when used in the
ensemble. Further, each time an ensemble is built in the communi-
cation phase, it is also evaluated by obtaining the ExF of the EMLC
over the full training dataset.

As some individuals could appear again in subsequent generations,
each classifier is stored in a table along with its fitness. Therefore, if
this individual needs to be evaluated again, its fitness is just taken
from the table.

3.7 Ensemble generation
The process of generating the ensemble is shown in Algorithm 1.
The array with the number of expected votes eV is calculated before
selecting any member for the ensemble (line 1). This array contains
the number of times that each label should be added to the current
ensemble; at the beginning this array is calculated spreading votes
evenly among all labels. The best individual according to its fitness
is selected to initialize the ensemble e, and it is removed from p (lines
2-5); then the eV array is updated by subtracting one to each label of
this individual (line 6). Then, until the ensemble reaches the desired
size, the individual that best fits the ensemble, considering both per-
formance and diversity with the current ensemble is selected (lines
7-16). For that, the distance from each individual to the current en-
semble is calculated as a weighted distance. This distance is defined
in Equation 3, where JπK returns 1 if predicate π is true and 0 other-
wise, and ei is each of the members of the current ensemble. Also,
the weights w to calculate the distance are calculated by normalizing
the eV array in such a way that

∑q
l=1 wl = 1. This distance gives

more weight to labels that are less frequent in the ensemble, favor-
ing the selection of individuals containing them. Then, the individual
that maximizes a linear combination between its fitness and the dis-
tance is added to the ensemble. The β value could be modified in
order to give more importance to the performance of the individuals
or to the diversity of the ensemble, thus allowing to generate an en-
semble composed of accurate individuals which are diverse. Finally,
the ensemble e is returned (line 17).

dind =
1

n′

n′∑
i=1

q∑
l=1

(
wl × Jindl 6= eliK

)
(3)

4 EXPERIMENTAL STUDY
In this section we describe experimental studies performed, including
description of datasets and evaluation metrics used, as well as the
experimental settings.

4.1 Datasets
A set of 13 multi-label datasets from different domains was selected
to perform our experimental studies5. These datasets are shown in
5 Datasets were downloaded from the repository in

http://www.uco.es/kdis/mllresources

Algorithm 1 Ensemble generation.
Input: p: set of individuals.
Output: e: ensemble of n multi-label classifiers.

1: eV← calculate expected votes array
2: b← arg max

ind
(fitnessind)

3: e← {b}
4: n′ ← 1
5: p← p \ {b}
6: eV← update(eV, b)
7: while n′ < n do
8: for each individual ind in p do
9: dind ← distance(ind, e, eV)

10: end for
11: b← arg max

ind
(β ∗ dind + (1− β) ∗ fitnessind)

12: e← e ∪ {b}
13: n′ ← n′ + 1
14: p← p \ {b}
15: eV← update(eV, b)
16: end while
17: return e

Table 1 along with their main characteristics such as the cardinality,
i.e., average number of labels associated with each instance (card),
the average imbalance ratio (avgIR), and the ratio of dependent la-
bel pairs (rDep) [15]. Note that as the number of labels increases,
the number of possible different k-labelsets also increases, and even
more the number of different combinations of k-labelsets into an en-
semble. We selected datasets ranging from 6 to 123 labels, covering
a wide range of complexity.

Table 1: Datasets and their characteristics, including number of in-
stances (m), number of attributes (d), number of labels (q), cardinal-
ity (card), average imbalance ratio (avgIR), and ratio of dependent
label pairs (rDep). The datasets are ordered by the number of labels.

Dataset m d q card avgIR rDep
Reuters1000 294 1000 6 1.126 1.789 0.667
Guardian1000 302 1000 6 1.126 1.773 0.667
Bbc1000 352 1000 6 1.125 1.718 0.733
GnegativePseAAC 1392 1717 8 1.046 18.448 0.536
PlantPseAAC 978 440 12 1.079 6.690 0.318
Water-quality 1060 16 14 5.073 1.767 0.473
Yeast 2417 103 14 4.237 7.197 0.670
HumanPseAAC 3106 440 14 1.185 15.289 0.418
Birds 645 260 19 1.014 5.407 0.123
Genbase 662 1186 27 1.252 37.315 0.157
Medical 978 1449 45 1.245 89.501 0.039
NusWide6 2696 128 81 1.863 89.130 0.087
Stackex coffee 225 1763 123 1.987 27.241 0.017

4.2 Evaluation metrics

For the evaluation of the MLC methods, several evaluation metrics
have been used [8]. Hamming loss (HL) evaluates the average num-
ber of times a label is incorrectly predicted. It is a minimized metric,
and it is defined in Equation 4, where ∆ is the symmetric difference
between two binary sets. Subset Accuracy (SA), defined in Equation

6 A random selection of the original instances of NusWide cVLAD+ dataset
was performed in order to be able to execute it in a reasonable time.
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5, is a strict metric that evaluates the ratio of instances whose labelset
was perfectly predicted (including all relevant and irrelevant labels).

↓ HL =
1

m

m∑
i=1

1

q
|Yi∆Ŷi| (4)

↑ SA =
1

m

m∑
i=1

JYi = ŶiK (5)

On the other hand, FMeasure is a widely used evaluation met-
ric in traditional classification, however, in MLC, three different ap-
proaches are usually used to calculate it, such as Example-based
FMeasure (ExF, Equation 2), Micro FMeasure (MiF, Equation 6),
and Macro FMeasure (MaF, Equation 7). In these equations, tpi, fpi,
and fni stands for the number of true positives, false positives, and
false negatives of the i-th label, respectively. ExF is calculated for
each instance, so it captures compound dependencies among labels.
MiF first joins the confusion matrices of all labels and then calcu-
lates the metric, thus giving more weight to more frequent labels.
MaF calculates the metric for each label and then averages their val-
ues, thus giving the same weight to each of the labels. Thus, there are
three different approaches to calculate FMeasure, each treating in a
different way the relationship and imbalance issues.

↑ MiF =

∑q
i=1 2 · tpi∑q

i=1 2 · tpi +
∑q

i=1 fpi +
∑q

i=1 fni
(6)

↑ MaF =
1

q

q∑
i=1

2 · tpi
2 · tpi + fpi + fni

(7)

4.3 Experimental settings
The goal of the experimental studies is to compare the performance
of the proposed CCEA with other state-of-the-art EMLCs. There-
fore, we selected the EMLCs with better performance [12], as well
as EME, which also uses an EA to build EMLCs. The datasets were
partitioned using random 5-fold cross-validation procedure, and all
methods were executed using 6 different seeds; then, the results were
averaged over 30 different runs. The experiments were performed on
a machine with Rocks cluster O.S., Intel Xeon E5645 Processor (6
× 2.40 GHz) and 64 GB RAM.

The default parameters proposed by their authors are used for each
method. Unless otherwise specified, EMLCs use n = 10 members
in the ensemble and LP with C4.5 decision tree [17] as the single-
label classifier. Both EBR and ECC use sampling with replacement
of the original training dataset at each member. EPS uses sample
without replacement. RAkEL uses n = 2q members and k = 3
labels. Finally, EME was run using 50 individuals in all cases, while
the number of generations ranges from 110 to 300 depending on the
dimensionality of the label space. As in RAkEL, EME uses n = 2q
members and k = 3.

In CCEA we use k = 3, just as in EME and RAkEL. However, in
order to have on average 10 votes for each label (as in EBR, ECC,
and EPS), the ensemble is composed by n = ‖3.33q‖members. Fur-
ther, the number of individuals of the whole population is 2n, evenly
distributed among subpopulations. For the selection of the rest of
parameters, a preliminary study was performed, which is available
in additional material7. We fixed the maximum number of genera-
tions ng = 50 in all cases and the number of generations between
communications of subpopulations to ngc = 5, so subpopulations

7 Additional material available at http://www.uco.es/kdis/CCEA

have some generations to evolve by themselves until they commu-
nicate. Crossover and mutation probabilities were fixed to pc = 0.7
and pm = 0.2 in smaller datasets (q < 30), and pc = 0.7 and
pm = 0.1 for bigger datasets (q ≥ 30). The number of subpopula-
tions (ns ∈ {3, 4, 5}) and value of β in the ensemble selection and
subpopulations update (β ∈ {0.25, 0.5, 0.75}) were selected by ex-
perimentation. In all cases, each subpopulation uses a random subset
of 75% of the instances, sampled without replacement.

To determine if significant performance differences existed among
the different EMLCs, we use Skillings-Mack’s [2] and Bonferroni-
Dunn’s statistical tests [3]. Skillings-Mack’s test is used to determine
if the performance of the algorithms is statistically different. It is sim-
ilar to Friedman’s test, but it could be used with missing values. Fur-
ther, Bonferroni-Dunn’s test is used to perform pairwise comparisons
with the control algorithm in each case. In order to perform compar-
isons without specifying a significance level and provide more statis-
tical information, the adjusted p-values were used [5].

5 RESULTS AND DISCUSSION
Due to space constraints, in this section we present a summary of the
experimental results; full results are available in additional material7.

The results are summarized in Table 2, showing the average rank-
ing for each of the EMLCs. For each dataset-metric pair, the best
method is given a ranking of 1, the second best a ranking of 2, etc.
The final ranking for each metric is calculated as the average value
of each method over all datasets. Note that in the two most complex
datasets, EME was not able to build a model within 2 days of exe-
cution. In these cases, the missing value is replaced by the average
value of ranking among the rest of algorithms for the given data, as
proposed in [2]. The last column shows the meta-ranking, calculated
as the average value of ranking for each method over all metrics.

Table 2: Average rankings.

HL SA ExF MiF MaF Meta-rank
CCEA 3.54 3.12 2.27 1.88 1.96 2.55
EME 4.00 3.96 4.08 3.85 3.00 3.78
ECC 2.50 2.69 2.88 3.08 3.96 3.02
EBR 1.69 4.15 4.69 4.65 4.92 4.02
RAkEL 5.08 3.81 2.85 2.81 1.85 3.28
EPS 4.19 3.27 4.23 4.73 5.31 4.35

As can be seen, the CCEA is the best ranked method overall, being
the best in two of the metrics, while EBR, ECC, and RAkEL are the
best in one metric each. Besides, except for MaF, in all cases CCEA
obtains a better average ranking than both RAkEL and EME, which
are based on learning small k-labelsets. Further, note that in SA and
MaF metrics the CCEA is the second best, and third in HL. RAkEL
achieves the worst performance in HL; EBR is always between the
two last positions in all metrics except for HL; and ECC is fourth in
MaF.

Skillings-Mack’s test results are shown in Table 3. It determines
that for all the metrics but SA, the performance of the EMLCs is
statistically different, so Bonferroni-Dunn’s post-hoc test is also per-
formed for those 4 metrics. Table 4 shows the adjusted p-values of
the comparison of the EMLCs using the control algorithm in each
case, which is the best method for a given metric. For each metric,
the control algorithm is indicated using “-”, and those methods which
performance is statistically different to the control algorithm at 95%
confidence are shown in bold.
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Table 3: Results of Skillings-Mack’s test.

Skillings-Mack statistic p-value
HL 27.80 3.98E-5
SA 5.90 3.16E-1
ExF 17.12 4.28E-3
MiF 23.15 3.15E-4
MaF 40.33 1.28E-7

Table 4: Results of Bonferroni-Dunn’s test.

HL ExF MiF MaF
CCEA 5.94E-02 - - 4.38E+00
EME 8.31E-03 6.88E-02 3.76E-02 5.79E-01
ECC 1.36E+00 2.01E+00 5.21E-01 1.97E-02
EBR - 4.80E-03 8.04E-04 1.38E-04
RAkEL 2.00E-05 2.16E+00 1.04E+00 -
EPS 3.29E-03 3.76E-02 5.25E-04 1.20E-05

From the results we can reach several conclusions. First, the pro-
posed CCEA is able to outperform EME. The fact of evolving in-
dividuals as separate members of the ensemble instead of using the
entire ensemble allows the CCEA to build an ensemble with more
promising members, while considering both performance and diver-
sity. On the other hand, the use of different subpopulations, each us-
ing a different sample of the original training dataset, introduces the
necessary diversity in the EMLC.

Second, we have shown that the CCEA had statistically better and
more consistent performance than state-of-the-art EMLCs. It has the
best average ranking among all metrics, being the best in two of
them, and also is the only method that does not perform statistically
worse than the control algorithm in any of the cases. EPS performs
statistically worse than the control method in all cases. EBR, which is
the best method in HL, performs statistically worse than the control
method in the rest of the metrics. ECC and RAkEL, which achieve
good performance in several metrics, perform statistically worse than
the control algorithm in one metric each at 95% confidence. The
CCEA is the only algorithm whose performance is statistically the
same than the control algorithm in all cases, which shows its consis-
tency.

Finally, a large number of labels means that in EMLCs where each
member is focused on a small k-labelset (such as CCEA, EME, and
RAkEL), the possible number of different k-labelsets and the pos-
sible number of combinations of members into an ensemble, grows
exponentially. Thus, in order to study the performance of the CCEA
in regard to dimensionality of the output space, in Figure 6 we show
the ranking of CCEA, EME, and RAkEL in each dataset for two of
the metrics, the MiF and MaF. Since rankings are presented in both
figures, the lower the value, the better the performance. In both fig-
ures the datasets are ordered by ascending number of labels. We can
see that as the number of labels increases, the CCEA obtains an op-
timal combination of members for the ensemble. This means that the
CCEA is suitable for datasets with a large output space. Since for
the two most complex datasets EME did not finish its execution, its
ranking is not shown in the figures.

6 CONCLUSIONS

In this paper we propose a cooperative coevolutionary algorithm to
build EMLCs. In CCEA algorithm, each individual of the population
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Figure 6: Ranking of CCEA, EME, and RAkEL for each dataset. The
ranking of EME in the two most complex datasets is not shown since
it did not finish its execution.

is a possible member of the ensemble. Several subpopulations ex-
ists simultaneously, where each of them use a different subset of the
training data to build multi-label classifiers, providing more diver-
sity to the ensemble. The evaluation of the individuals is performed
over the full training dataset, thus allowing to evaluate individuals
over some unseen instances as well as to better know how they will
perform when combined into the ensemble. Further, each ngc gener-
ations, subpopulations communicate among them, not only building
an EMLC using individuals from all subpopulations, but also sharing
information between them, thanks to the used genetic operators.

The experimental study carried out using 13 multi-label datasets
and 5 evaluation metrics demonstrated that the proposed CCEA has a
statistically better and more consistent performance than state-of-the-
art EMLCs. The CCEA is not only the method with better average
ranking among all metrics but also it is the only one which does not
perform statistically worse than the control algorithm in any of the
cases.

In the future, we will work on other ways to communicate between
the subpopulations, as well as define other criteria to increase the
diversity of each subpopulation.
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