Lifting Majority to Unanimity in Opinion Diffusion

Zhiqiang Zhuang1\ and Kewen Wang21\ and Junhu Wang2\ and Heng Zhang1\ and Zhe Wang2\ and Zhiguo Gong3

Abstract. In this paper, we study an information exchange process in which a network of individuals exchanges a binary opinion. In the process, the individuals change their opinions only if a majority of their neighbours have the opposite opinion and they do it synchronously. Motivated by applications in multiagent systems, distributed computing, and social science, our goal is to derive graph-theoretic features of the network that guarantee whenever a majority of individuals initially have the same opinion, they will eventually spread the opinion to all individuals. We tackle the problem by first introducing a graph-theoretic notion called controlling set which is capable of characterising the information exchange process and, by exploiting the notion, we obtain a series of lower and upper bounds on the in-degree of vertices as well as lower bound on the size of certain neighbourhoods for guaranteeing the majority to unanimity behaviour.

1 Introduction

In this paper, we study an information exchange process often referred to as opinion diffusion \cite{1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 14} in multiagent systems. The process also goes by the name of majority dynamics in discrete mathematics \cite{3, 18, 20, 21} and general threshold model in social influences \cite{10, 13, 15}. With minor variations, the primitive form of the process is as follows. For a finite network of individuals, at time 0, each has an initial opinion of either 1 or 0, then at time $t \geq 1$, an individual i changes its opinion only if a majority of its neighbours have the opposite opinion. Depending on the problem setting, the individuals update their opinions either synchronously or asynchronously and the network is formalized as an undirected graph, a directed graph or other specialized graphs such as expander graph. Since there is a finite number of individuals, the process will either stabilize where no individual makes any change to its opinion or run into a cycle where the individuals periodically change their opinions.

The central problem of this paper is to identify network features that guarantee an opinion diffusion always stabilizes with all individuals having 1 (0) as their opinions, whenever a majority of the individuals initially have the opinion of 1 (resp. 0). That is, to ensure the initial majority opinion eventually become the unanimous opinion. For convenience, we refer to the problem as the majority to unanimity problem. To be clear, by ‘majority’, we mean a sufficiently large proportion of the individuals where the proportion is specified by the threshold variable T such that $1/2 \leq T \leq 1$. Also, we formalize the network as a directed graph and adopt the synchronous mode of opinion update.

The majority to unanimity problem arises naturally in many application scenarios of multiagent systems, distributed computing, and social sciences. Whenever majority voting is adopted by a society to reach a consensus that represents the genuine majority opinion of the society, such as in a referendum, we need to guarantee the triumph of the initial majority opinion, as in the majority to unanimity problem. In the realm of discrete mathematics, a good deal of effort has been made in solving the majority to unanimity problem and its variants \cite{3, 18, 20, 21}. It is pointed out in \cite{21} that several aspects of distributed computing can be formulated as a majority to unanimity problem. For instance, to alleviate the damage caused by faulty processors, replicated copies of data are maintained. A simple majority voting process is performed among the participating processors whenever a fault occurs, and the goal is to adopt the initial value stored at the majority of the processors. The process almost always restores the correct value of the data, as it is believed that only a minority of processors can be faulty at any time. For this recovery process to work, the structure of the processor network has to ensure that a majority number of processors always take control of all processors in the voting process. Finally, the line of works in social sciences that aims to understand how opinions are formed and expressed in a social context also benefits from studying the majority to unanimity problem.

There have been many efforts in the multiagent system community to investigate behaviours of opinion diffusion related to the majority to unanimity problem. For instance, \cite{14} articulates properties of the aggregation rules and features of the network that lead to the stabilization and convergence of opinion diffusion. Additionally, \cite{2} aims to identify conditions for a minority/majority of individuals to spread their opinions to the whole population in terms of the configurations of the initial opinions. In contrast to our setting, they assume the individuals update their opinions asynchronously. The discrete mathematics community also investigated issues related to the majority to unanimity problem. Most noticeably, they study the extremal combinatorial aspects of opinion diffusion such as to establish lower bounds for the cardinality of an individual set capable of controlling the whole population in an opinion diffusion \cite{3, 20, 21}. Moreover \cite{18} tackles the majority to unanimity problem through the exploration of network structure. They provide several sufficient or necessary conditions on networks formalized as undirected graphs. Many results in this paper generalize or strengthen those in \cite{18}.

In addressing the majority to unanimity problem, we first introduce a graph-theoretic notion called controlling set which makes the collective influential power of a set of individuals to another in an opinion diffusion explicit. Roughly speaking, if a set of individuals C has a unified opinion and is a controlling set of another set of indi-
individuals S, then the individuals of C can persuade those of S to agree with the unified opinion within some predefined rounds of opinion exchange. As we will show, the controlling relationship specified by the notion of controlling set fully characterizes the behavior of opinion diffusion. Because of this, to obtain guaranteeing conditions for the majority to unanimity problem, instead of dealing with the iterated and dynamic process of opinion diffusion, we only have to look into the directed graph that formalizes the underlying network. Following this strategy, we derive a series of lower and upper bounds on the indegree of vertices of the directed graph and lower bound on the size of some neighbourhoods of the directed graph that form sufficient and/or necessary conditions for the majority to unanimity problem.

The formal model of opinion diffusion is presented in the next section. In Section 3, we introduce the notion of controlling set and demonstrate its capability of fully characterizing opinion diffusion. Then Section 4 covers a range of sufficient and/or necessary conditions formalized in graph-theoretic terms for the majority to unanimity problem. Finally, we give the related work and conclude the paper.

2 Opinion Diffusion

Opinion diffusion is a discrete sequence of synchronous opinion aggregation and update among a network of individuals. At any time $t \geq 1$, each individual aggregates the opinions of its influencers at time $t - 1$ and update its opinion accordingly. We denote the opinion of individual i at t as O_t^i and the opinion profile at t as the n-dimensional vector $O_t^i = (O_1^i, \ldots, O_n^i)$ where n is the number of individuals in the network. O_t^i and O_t^j denote respectively the initial opinion of i and the initial opinion profile.

Formally, an opinion diffusion $OD = (G, T, O^0)$ consists of a finite directed graph G, a threshold T, and an initial profile O^0. The directed graph $G = (N, E)$ represents the influence among a set of individuals where $N = \{1, \ldots, n\}$ is a set of n vertices representing the individuals and $E \subseteq N \times N$ is a set of edges between pairs of vertices representing the existence of influence from one individual to another where $(i, j) \in E$ indicates i is an influencer of j. The threshold T indicates the threshold proportion such that $1/2 \leq T < 1$. An individual alters its opinion at time t only if the proportion of its influencers having the opposite opinion at time $t - 1$ is greater than T.

We denote the set of individuals that influence individual i as $I^-(i)$ and those influenced by i as $I^+(i)$, that is

$$I^-(i) = \{j \in N \mid (i, j) \in E\}$$

and

$$I^+(i) = \{j \in N \mid (j, i) \in E\}.$$

By abuse of notation, we write $\bigcup_{i \in S} I^+(i)$ as $I^+(S)$ and similarly for $I^-(S)$. Moreover, we denote the indegree of a vertex (i.e., an individual) i as $d(i)$, hence $d(i) = |I^-(i)|$. Note that, for any set S, $|S|$ is its cardinality. We may attach subsets to $I^-(i)$ and $I^+(i)$ to denote their subsets and similarly to $d(i)$. For example, given a set of individuals C, $d_C(i) = |I^-(i) \cap C|$ and $d_C(i)$, respectively. Given an opinion profile O^t, we denote the set of individuals whose opinions are 1 and respectively 0 in O^t as O^t_1 and O^t_0. Since $O^t = N \setminus O^t_0$, O^t_0 or O^t_1 alone uniquely identifies the opinion profile O^t. We say an opinion profile O^t has a majority opinion if either $|O^t_1|/n > T$ or $|O^t_0|/n > T$, otherwise it has no majority opinion.

The change of an individual’s opinion is governed by the following update rule:

$$O^t_{i} = \begin{cases} 1 & \text{if } d_{O^t_{i-1}}(i)/d(i) > T \\ 0 & \text{if } d_{O^t_{i-1}}(i)/d(i) > T \\ O^t_{i-1} & \text{otherwise} \end{cases}$$

for all $i \in N$ and $t \geq 1$. That is, an individual changes its opinion only if the proportion of its influencers having the opposite opinion exceeds T.

The two most common and indeed fundamental properties of opinion diffusion are stabilization and convergence. We say an opinion diffusion $OD = (G, T, O^0)$ stabilizes at t if $O_t^i = O_{t+1}^i$ and we call O_t^i the stabilized opinion profile. Moreover, if the opinion diffusion stabilizes at t and the stabilized opinion profile is such that $O_t^1 = O_{t+1}^1 = \cdots = O_n^1$, we say the opinion diffusion converges at t.

Figure 1 illustrates an opinion diffusion with $T = 1/2$ and an initial opinion profile $(1, 1, 1, 0, 0, 0, 0)$. Note that, all nodes in the graph have a self-loop which is omitted for clarity; a cycle involving two nodes is simplified to a two-way arrow, and a vertex filled by grey indicates the corresponding individual’s opinion is 1 and otherwise 0. Starting from time 1, each individual updates its opinion according to the update rule. For example, at time 1, since individual 3 has more than half of its influencers having the opinion of 1, (i.e., $d_1(3)/d(3) = d_{(1,2,3)}(3)/d(3) = 3/4 > 1/2$), the individual updates its opinion to 1 which happens to be its initial opinion. One can verify that the opinion diffusion stabilizes and converges at time 2.

For this opinion diffusion, starting with the initial majority opinion of 0, it stabilizes with all individuals having a unanimous opinion of 1. Clearly, this is what we want to avoid for the majority to unanimity problem. For the ease of presentation, we formalize the property of opinion diffusion with respect to the majority to unanimity problem as majority dominating.

Definition 1. An opinion diffusion $OD = (G, T, O^0)$ is majority dominating if there is a time t such that $O^t = (1, \ldots, 1)$ whenever $|O^t_1|/n > T$ (resp. $|O^t_0|/n > T$).

That is, an opinion diffusion is majority dominating iff whenever there is an initial majority opinion the opinion diffusion converges on it. Recall that $|O^t_1|$ is the number of individuals whose initial opinion is 1, hence $|O^t_0|/n > T$ means 1 is the initial majority opinion. The opinion diffusion in Figure 1 is not majority dominating, because, although it converges, the opinion that everyone has at convergence (i.e., 1) is different from the initial majority opinion (i.e., 0).

Before ending this section, we give the complexity result for determining whether an opinion diffusion is stabilizable, convergent, and majority dominating respectively.

Proposition 1. It is PSPACE-complete to determine whether a given opinion diffusion is stabilizable, convergent, and majority dominating respectively.

Proof. The membership is trivial for all the desired cases. Here we only consider the hardness. The PSPACE-hardness of stabilizability immediately follows from Theorem 1 in [6] which asserts that deciding whether a given opinion diffusion with threshold 1/2 is stabilizable is PSPACE-complete. Below we show how to prove the PSPACE-hardness of majority dominating. Note that the case of convergence can be proved by almost the same argument.

The general idea is to reduce the problem of checking whether a given polynomial space-bounded Turing machine halts to our problem (i.e., checking whether a given opinion diffusion is majority
dominating). With this reduction, as the former problem was proved to be PSPACE-hard (see Theorem 19.9 in [19] and the proof of Theorem 1 in [6]), we thus obtain the desired hardness.

Now it remains to implement the reduction. Given any polynomial space-bounded Turing machine M, we assume, w.l.o.g., that M has only one halting state h, represented by a binary string “11...1” of an even length $2k$; and assume each of the other states of M is represented by a binary string of length $2k$ in which the number of ‘0’ is the same as that of ‘1’. By the approach proposed in [6], one can construct an opinion diffusion OD_M with threshold 1/2 to simulates M. W.l.o.g., suppose $(x_1, y_1), \ldots, (x_{2k}, y_{2k})$ are the dual pairs in OD_M that encode the current state of M. Keep in mind that, in the binary representation of each state, ‘0’ is encoded by the dual pair $(0, 1)$, and ‘1’ by $(1, 0)$. Let n be the number of vertices in OD_M, and let m be the least integer that is not less than $n/2$. Now we define a new opinion diffusion OD_M', obtained from OD_M by

1. adding fresh vertices v_1, \ldots, v_{2m} into OD_M', setting the initial opinion of v_1, \ldots, v_m to be 1, and setting the initial opinion of v_{m+1}, \ldots, v_{2m} to be 0;
2. adding fresh vertices u_1, \ldots, u_{4m+1} into OD_M', and setting the initial opinion of u_1, \ldots, u_{4m+1} to be 1.
3. for each $i \in \{1, \ldots, 2m\}$, adding edges $(x_i, v_i), \ldots, (x_{2k}, v_i)$ into OD_M'.
4. for each vertex v in OD_M', adding edges $(v, v_1), \ldots, (v_{2m}, v)$ into OD_M'.

Intuitively, vertices v_1, \ldots, v_{2m} and related edges are used to check whether M halts; if true, then change their opinion to 1; by applying the diffusion, the opinion of any other vertex in OD_M' will be changed to 1. Vertices u_1, \ldots, u_{4m+1} are introduced to assure that more than one half of vertices in OD_M hold the initial opinion 1.

Clearly, the size of OD_M' is still polynomial w.r.t. the size of M. It is also not difficult to see that M halts iff OD_M' is majority dominating. These then prove the correctness of the reduction.

The PSPACE-hardness indicates that, unless PTIME = PSPACE, it is impossible to identify features of a directed graph that characterize majority dominating opinion diffusion and are tractable to verify. The result sets the tone for our exploration of the majority to unanimity problem in which we aim for intuitively appealing and simple features of a directed graph that ensure majority dominating over some typical instances of opinion diffusion, and necessary (but not sufficient) features over all instances of opinion diffusion.

3 Controlling Set and Opinion Diffusion

In this section, we first introduce a graph-theoretic notion called controlling set, then we derive some of its important properties, and finally, we demonstrate its capability of fully characterizing the behaviour of opinion diffusion, which paves the way for obtaining network features that are sufficient or necessary for the majority dominating property of opinion diffusion. The notion of controlling set is not entirely new. For instance, the main idea behind it has been discussed in [9] which gives rise to the notions of winning and veto coalitions and dependency sequence. Apart from slight variations in the problem setting, the notions are essentially the same as that of controlling set. The difference is that, in this paper, we give a more comprehensive and systematic treatment of the properties of the notion, the intuitions behind it, and special classes of it. Also, while [9] uses the notion to form conditions for the stabilization of an opinion diffusion, we use it for the majority dominating property.

Lies in the heart of an opinion diffusion is the back and forth of groups of individuals gaining control of the opinions of each other. With controlling set, we intend to capture the controlling relationship between groups of individuals in terms of the structure of the underlying network. More precisely, given two sets of individuals C and S, the controlling relationship between C and S should imply the following: if, at some point time, individuals of C all have 1 (0) as their opinions, then, at some later time point, the individuals of C and S all have 1 (resp. 0) as their opinions. Essentially, the definition of controlling set is a reinterpretation of the update rule through graph-theoretic notions. For convenience, unless stated otherwise, in the remaining of the paper, the letters C, S, R denote a subset of N.

We define that C is a level k controlling set for S with respect to a threshold T, iff for any individual i of S, the proportion of incoming edges from C is greater than T when i is not in C and is no less than $1 - T$ when i is in C. Generalizing to arbitrary levels, C is a level k controlling set for S, iff there is a sequence of $k + 1$ sets that starts with C and ends with S such that any set in the sequence is a level 1 controlling set for the next one in the sequence. We say C controls S if there is a such k that C is a level k controlling set for S.

Definition 2. The set of level k controlling sets for S with respect to a threshold T, denoted as $C^k_T(S)$, is such that $C \in C^k_T(S)$ iff

1. $d_C(i)/d_T(i) > T$ for $i \in S \setminus C$, and
2. $d_C(i)/d_T(i) \geq 1 - T$ for $i \in S \cap C$.

For $k \geq 2$, $C \in C^k_T(S)$ iff there are C_0, C_1, \ldots, C_k such that $C_0 = C$, $C_k = S$ and $C_i \in C_{i+1} \setminus C_i$ for $0 \leq i \leq k - 1$.

Condition 1 takes care of the case where i of S is not in C, which means i may hold the opposite opinion than the unified opinion of C. Thus to ensure it will change its opinion to the unified opinion of C, the proportion of its influencers in C has to be greater than T. Condition 2 takes care of the case where i is in C. Since the notion of controlling set is intended solely for situations when all individuals of C have the same opinion, we only need to ensure i does not change its opinion which means the proportion of its influencers outside C has to be less than T, or equivalently, the proportion of its influencers in C is greater than or equal to $1 - T$.

Let’s illustrate the definition with the opinion diffusion in Figure 1. Taking individual 4 as an example, since

$$d(4) = |I^-(4)| = |\{1, 2, 3, 4, 5\}| = 5$$
and

$$d_{\{1, 2, 3\}}(4) = |I^-(4)| \cap \{1, 2, 3\}| = |\{1, 2, 3\}| = 3$$

\begin{figure}[h]

\centering

\includegraphics[width=0.5\textwidth]{figure1.png}

\caption{An opinion diffusion with $O^0 = \{1, 1, 1, 0, 0, 0, 0\}$ and $T = 1/2$.}
\end{figure}
we have $d_{1,2,3}(4)/d(4) = 3/5 > 1/2$ which means $\{1,2,3\} \in C_{1,2,3}'(\{4\})$. For other individuals, since $d_{1,2,3}(3)/d(3) = 3/4 > 1/2$, $d_{1,2,3}(5)/d(5) = 3/4 > 1/2$, and $d_{1,2,3}(6)/d(6) = 2/3 > 1/2$, we have $\{1,2,3\} \in C_{1,2,3}'(\{3,4,5,6\})$. One can also verify that $\{3,4,5,6\} \in C_{1,2,3}'(\{1,2,3,4,5,6,7\})$ which implies $\{1,2,3\} \in C_{1,2,3}'(\{2,3,4,5,6,7\})$, that is, $\{1,2,3\}$ is a level 2 controlling set for N. We first derive some basic properties of controlling set. Summarised in Lemma 1, the relationship induced by controlling set is “monotonic” that if C controls S with respect to a threshold T, then this also holds for any subset of S (point 1), any superset of C (point 2), and any smaller threshold than T (point 3). It is “additive” that C is a level k controlling set for S which is a level l controlling set for R implies C is a level $k+l$ controlling set for R (point 4). Finally, it is “exclusive” that non-overlapping sets cannot control the same set (point 5).

Lemma 1. Let C, R, S be sets of individuals. Then the following holds:

1. If $C \subseteq C_{k}'(S)$ and $R \subseteq S$, then $C \subseteq C_{k}'(R)$;
2. If $C \subseteq C_{k}'(S)$ and $C \subseteq R$, then $R \subseteq C_{k}'(S)$;
3. If $T > T'$ and $C \subseteq C_{k}'(S)$, then $C \subseteq C_{k}'(S)$;
4. If $C \subseteq C_{k}'(S)$ and $S \subseteq C_{k}'(R)$, then $C \subseteq C_{k+1}'(R)$;
5. If $C, R \subseteq C_{k}'(S)$, then $C \cap R \neq \emptyset$.

Proof. We only provide the proof for point 5 as the rest follow immediately from Definition 2.

Point 5: Let $A, B \subseteq N$ and $A \cap B = \emptyset$. For all $i \in N$, $A \subseteq C_{k}'(S)$ implies $d_A(i)/d(i) = |I(i) \cap A|/d(i) > T$. It follows from $|I(i) \cap A|/d(i) > T$ that $|I(i) \cap (I(i) \cap A)|/d(i) > 1 - T$. Then as $(I(i) \cap A) \subseteq (I(i) \setminus (I(i) \cap A))$ follows from $A \cap B = \emptyset$, we have $d_B(i)/d(i) = |I(i) \cap B|/d(i) < |I(i) \setminus (I(i) \cap A)|/d(i) < 1 - T$ which means $B \not\subseteq C_{k}'(i)$. Hence, for all $A, B \subseteq N$, $A \cap B = \emptyset$ implies there is no $i \in N$ such that $A \in C_{k}'(i)$ and $B \not\subseteq C_{k}'(i)$.

Suppose $C, R \subseteq C_{k}'(S)$. Then there are sequences C_0, C_1, \ldots, C_k and R_0, R_1, \ldots, R_k such that $C_0 = C$, $R_0 = R$, $C_k = R_k = S$, and $C_i \subseteq C_{k+1}'(C_{i+1})$, $R_i \subseteq C_{k+1}'(C_{i+1})$ for $0 \leq i \leq k - 1$. Let's assume $C \cap R = \emptyset$. Then according to the above, $R_i \cap C_i = \emptyset$ for $1 \leq i \leq k$, which is a contradiction. Hence $C \cap R \neq \emptyset$.

Let C be a level k controlling set for S. Inspired by the monotonicity of the controlling relationship, it is natural to ask if S is the maximal set that C controls. This leads to the notion of maximal controlling sets.

Definition 3. The set of maximal level k controlling sets for S with respect to T, denoted as $MC_{k}'(S)$, is such that $C \in MC_{k}'(S)$ if $C \subseteq C_{k}'(S)$ and there is no $R \supset S$ such that $C \subseteq C_{k}'(R)$.

While there can be many maximal level k controlling sets for a given set, every set can be a maximal level k controlling set for exactly one set. In Figure 1, $\{1,2,3\}$ is an maximal level 1 controlling set for $\{3,4,5,6\}$. Note that any set that controls N is trivially a maximal controlling set for N as there is no set larger than N. With this notion of maximality, we can derive that the controlling relationship is "complementary" that for any individual $i \in N$, if a set C does not control it, the complement of C (with respect to N) does.

Lemma 2. Let $C \subseteq N$ and $i \in N$. If $C \not\subseteq C_{k}'(\{i\})$, then $N \setminus C \subseteq C_{k}'(\{i\})$.

Proof. Let $S \subseteq N$. We first show that, if $S \not\subseteq C_{k}'(\{i\})$, then $N \setminus S \subseteq C_{k}'(\{i\})$. There are two cases.

Case 1, $i \in S$: Then $i \not\in N \setminus S$. Also, by Definition 2, $d_{S}(i)/d(i) = |I(i) \cap S|/d(i) < 1 - T$ which implies $|I(i) \setminus (I(i) \cap S)|/d(i) > T$. Then since $|I(i) \setminus (I(i) \cap S)| = |I(i) \setminus (N \setminus S)|$, we have $|I(i) \setminus (N \setminus S)|/d(i) = d_{N \setminus S}(d(i) > T)$. Hence, by Definition 2, $N \setminus S \subseteq C_{k}'(\{i\})$.

Case 2, $i \not\in S$: Then $i \not\in N \setminus S$. Also, by Definition 2, $d_{S}(i)/d(i) = |I(i) \cap S|/d(i) \leq T$ which implies $|I(i) \setminus (I(i) \cap S)|/d(i) \geq 1 - T$. Then since $|I(i) \setminus (I(i) \cap S)| = |I(i) \setminus (N \setminus S)|$, we have $|I(i) \setminus (N \setminus S)|/d(i) = d_{N \setminus S}(d(i) \geq 1 - T)$. Hence, by Definition 2, $N \setminus S \subseteq C_{k}'(\{i\})$.

Thus, we have proved the above claim.

Now suppose $C \not\subseteq C_{k}'(\{i\})$. Let $C \in MC_{k}'(\{\{C\}\})$ (Note that such C_k always exists). It follows from $C \subseteq MC_{k}'(\{\{C\}\})$ that there is a sequence C_0, C_1, \ldots, C_k such that $C = C_0$ and $C_i \subseteq MC_{k+1}'(C_{i+1})$ for $0 \leq i \leq k - 1$. Thus $i \not\in C_k$ and by Definition 3 $C_{i+1} \not\subseteq C_{k}'(\{i\})$ for all $j \in N \setminus C$ and $0 \leq i \leq k - 1$. It then follows from the above claim that $N \setminus C \subseteq MC_{k}'(N \setminus C_i)$ for $0 \leq i \leq k - 1$ which implies $N \setminus C \subseteq C_{k}'(N \setminus C_i)$. Since $i \in N \setminus C$, we have $N \setminus C \subseteq C_{k}'(i)$.

An easy consequence of the complementary property is that S is a maximal level k controlling set for R iff their complements also form such a relationship.

Corollary 1. Let $S, R \subseteq N$. Then $S \in MC_{k}'(R)$ iff $N \setminus S \in MC_{k}'(N \setminus R)$ for all k.

Therefore, for the opinion diffusion in Figure 1, it follows from $\{1,2,3\} \in MC_{1,2}'(\{3,4,5,6\})$ that $\{4,5,6\} \in C_{1,2}'(\{1,2,7\})$.

An interesting special case of the controlling relationship is for a set to control itself. With the notion of maximal controlling set, we can capture such self controlling sets more concisely.

Definition 4. Let $S \subseteq N$. Then S is a self controlling set if $S \in MC_{k}'(S)$ for some k. Furthermore, S is a resistant set if $S \not\subseteq MC_{k}'(S)$.

Note that N is trivially a self controlling as well as a resistant set. A crucial property of a self controlling set is that it cannot control N, unless it is itself N.

Lemma 3. Let $S \subseteq N$. If S is a self controlling set, then $S \not\subseteq C_{k}'(N)$ for all k.

Proof. Suppose S is a self controlling set. Then $S \in MC_{k}'(S)$ for some t. Let's assume $S \subseteq C_{k}'(N)$ for some k. Then there are two cases.

Case 1, $k \leq t$: Since $N \subseteq C_{k}'(N)$ for all l, it follows from $S \subseteq C_{k}'(N)$ and Lemma 1 (point 4) that $S \subseteq C_{k}'(N)$. But $S \not\subseteq MC_{k}'(N)$ and $S \not\subseteq N$, so we have a contradiction.

Case 2, $k > t$: Then $S \subseteq C_{k}'(N)$ implies there is a sequence S_0, S_1, \ldots, S_t such that $S = S_0$, $S_k = N$, and $S_i \subseteq S_{i+1}$ for $0 \leq i \leq k - 1$. Since $S \subseteq MC_{k+1}'(S)$, we have $S \not\subseteq S_{k+1}$. Then it follows from Lemma 1 (point 2) that $S \in C_{k+1}'(N)$. If $k - t \leq t$, then we have a contradiction as in Case 1. Otherwise, we
can keep repeating the above steps to obtain \(S \in C^t_T(N) \) for some \(t \leq t \).

Since both cases lead to contradiction, we conclude that \(S \not\in C^t_T(N) \) for all \(k \).

Consequently, a self controlling set is able to “block” all other sets from controlling \(N \), except for \(N \) itself. That is, unless \(R \) is \(N \), \(R \) cannot control \(N \) whenever \(R \) is a maximal controlling set for a self controlling set. The blocking behaviour turns out to be the cornerstone for several main results in the paper.

Lemma 4. Let \(R, S \subseteq N \). If \(S \) is a self controlling set and \(R \in MC^0_T(S) \) for some \(t \), then \(R \not\in C^t_T(N) \) for all \(k \).

Now let’s turn our attention to the most “resistant” kind of self controlling set—the resistant set. We can show that a resistant set can never be controlled by individuals outside the resistant set.

Lemma 5. Let \(S \subseteq N \). If \(S \) is a resistant set, then \(N \setminus S \not\in C^t_T(S) \) for all \(k \).

Proof. Suppose \(S \) is a resistant set. Thus we have \(S \in MC^0_T(S) \).

It then follows from Lemma 1 (point 4) and Definition 3 that \(S \in MC^k_T(S) \) for all \(k \). Since \(S \in MC^k_T(S) \) for all \(k \), it follows from Corollary 1 that \(N \setminus S \in MC^k_T(N \setminus S) \) for all \(k \) which means \(N \setminus S \not\in C^t_T(S) \) for all \(k \).

So far we have defined and explored controlling sets purely as a graph-theoretic notion. It’s time to see how it relates and characterizes opinion diffusion. Actually, for an opinion diffusion the opinion profile characterizes opinion diffusion. We can show that a resistant set cannot control \(N \), except for \(N \), itself.

Proposition 2. For an opinion diffusion \(OD = (G, T, O^0) \),

\[1_{O^k} \in MC^t_T(1_{O^k}) \]

for all \(t > k \).

Proof. By Lemma 1 (point 4), it suffices to show \(1_{O^k} \in MC^t_T(1_{O^k+1}) \). It is clear from Definition 2 and the update rule that \(1_{O^k} \in MC^t_T(1_{O^k+1}) \). Suppose \(i \notin 1_{O^k+1} \), then \(O^k+1 = 0 \).

Then it follows from the update rule that \(d_{1_{O^k}}(i)/d(i) < 1 - T \) when \(i \notin 1_{O^k} \) or \(d_{1_{O^k}}(i)/d(i) < 1 - T \) when \(i \in 1_{O^k} \).

Then we have by Definition 2 that \(1_{O^k} \in MC^t_T(1_{O^k}) \).

An opinion diffusion stabilizes if it gets into an opinion profile \(O^k \) and sticks with it. According to Proposition 2 this happens only if \(1_{O^k} \) is a resistant set. Furthermore, if the resistant set \(1_{O^k} \) is \(N \), then the opinion diffusion also converges at \(t \). That is, an opinion diffusion \(OD = (G, T, O^0) \) stabilizes at \(t \) iff there is \(S \subseteq N \) (denoting the set \(1_{O^k} \)) such that \(S \) is a resistant set and either \(1_{O^k} \) or \(0_{O^k} \) controls \(S \); and the opinion diffusion converges at \(t \) iff either \(1_{O^k} \) or \(0_{O^k} \) controls \(S \). Generalizing to arbitrary initial profiles, we obtain the following conditions for the stabilization and convergence of opinion diffusion.

Proposition 3. OD = (G, T, O^0) stabilizes for all O^k iff for all C \(\subseteq N \), there is \(S \subseteq N \) such that \(S \) is a resistant set and either \(C \in MC^k_T(S) \) or \(N \setminus C \in MC^k_T(S) \) for some \(k \).

Corollary 1 that \(N \setminus S \not\in C^t_T(S) \) for all \(k \) for some \(k \).
does not control any individual. In the former case, since \(S \) does not control \(\mathcal{N} \), \(S \) controls some \(R \subset \mathcal{N} \) that is a self controlling set, which violates condition 1. In the latter case, since \(S \in \mathcal{MC}^c(\emptyset) \) and \(\mathcal{N} \setminus \emptyset = \mathcal{N} \), it follows from Corollary 1 that \(\mathcal{N} \setminus S \in \mathcal{MC}^c(\mathcal{N}) \). Then since \(|S| > n \cdot T \) implies \(|\mathcal{N}/S| < n \cdot (1 - T) \), condition 2 is violated.

For condition 1, according to Lemma 4, self controlling sets have the effect of blocking control over \(\mathcal{N} \). Therefore, we cannot bear to have too many self controlling sets if the goal is to gain control over \(\mathcal{N} \). For condition 2, it shows that there cannot be any switch of the majority opinion if \((\mathcal{G}, T, \Omega^0) \) is majority dominating for all \(\mathcal{O}^0 \). That is, if the initial majority opinion is 1, then any of the subsequent opinion profiles cannot have a majority opinion of 0.

Next, we give an implication of the characterising controlling relationship, which reveals the lower bound on the size of some “neighbourhood.” The closer \(T \) is to 1/2, the more informative the condition is.

Proposition 6. If for all \(S \subseteq \mathcal{N} \) with \(|S| > n \cdot T \), \(S \in \mathcal{C}_2^{(1)}(\mathcal{N}) \) for some \(k \), then

\[
|I^-(S) \cup I^+(S) \cup I^-(I^+(S))| > n \cdot T
\]

for all \(S \) such that \(i, j \in S \) implies \(I^+(i) \cap I^+(j) = \emptyset \) and \(I^-(i) \cap I^-(j) = \emptyset \), and \(|S| > 2n \cdot T \) and \(n \cdot T \) is an integer, and \(|S| > 2n \cdot T \) otherwise.

Proof. Suppose \(S \) controls \(\mathcal{N} \) for all \(S \) with \(|S| > n \cdot T \). Then there is \(R \) such that \(S \in \mathcal{C}_1^2(R) \) and \(R \) controls \(\mathcal{N} \). It follows from Proposition 5 (condition 1) that \(d(i) > 1/(1 - T) \) for all \(i \in \mathcal{N} \). Note that if \(d(i) \leq 1/(1 - T) \), then \(i \) is a resistant set. Assume to the contrary that \(|I^-(S) \cup I^+(S) \cup I^-(I^+(S))| \leq n \cdot T \). Suppose \(n \cdot T \) is an integer. Let \(A \subseteq \mathcal{N} \) be such that \(|A| = n \cdot T + 1 \) and \(I^-(S) \cup I^+(S) \cup I^+(I^+(S)) \subseteq A \). We will show \(A \setminus S \in \mathcal{C}_1^2(R) \).

Let \(i \in R \). There are three cases.

Case 1, \(j \not\in I^+(S) \): then \(d_A \setminus j(S) = d_A(j) \) which means \(A \setminus S \in \mathcal{C}_1^2(j) \).

Case 2, \(j \in I^+(S) \) \& \(S \in \mathcal{N} \): then it follows from \(I^-(S) \subseteq A \) that \(d_A(S) = d_A(j) \). Then, since for all \(i, j \in S \), \(I^+(i) \cap I^+(j) = \emptyset \), we have \(d_A \setminus j(S) \) \& \(\emptyset \) if \(d_A(S) > 1/(1 - T) \) for all \(i \in \mathcal{N} \) such that \(d_A \setminus j(S) = d_A(j) \). Then it follows from \(d(i) > 1/(1 - T) \) for all \(i \in \mathcal{N} \) such that \(d_A \setminus j(S) = d_A(j) \) if \(d_A \setminus j(S) > 1/(1 - T) \) for all \(i \in \mathcal{N} \) such that \(d_A \setminus j(S) = d_A(j) \). Then, since for all \(i, j \in S \), \(I^-(i) \cap I^-(j) = \emptyset \), we have \(d_A \setminus j(S) \) \& \(\emptyset \) if \(d_A(S) > 1/(1 - T) \).

Therefore, \(A \setminus S \in \mathcal{C}_1^2(R) \) and it follows from Lemma 1 (point 4) that \(A \setminus S \) controls \(\mathcal{N} \). Since \(|S| > 2n \cdot T \) and \(n \cdot T + 1 \), \(A \setminus S \) \& \(n \cdot T \) and \(1 \). Then according to Proposition 5 (condition 2), we have a contradiction.

The proof is similar for when \(n \cdot T \) is not an integer.

The condition states that for any set \(S \) with certain lower bound of cardinality where all its individuals do not influence or are influenced by the same individual, its close neighbourhood occupies a majority of vertices. The intuition for the lower bound of cardinality is that (for the case when \(n \cdot T \) is an integer, and the other case is similar) it is the number of vertices that needs to be taken away to turn a set with a majority number (i.e., \(n \cdot (1 - T) \)) of vertices. The close neighbourhood is formed to make sure the removal of all vertices in \(S \) does not affect what the neighbourhood controls when the size of the neighbourhood is less than \(n \cdot T \). Note that as \(T \) gets closer to 1/2, the lower bound of cardinality gets smaller. Hence we have an indication of the size of the close neighbourhood of a relatively smaller set of vertices. If \(T \) is exactly 1/2 and \(n \) is odd, then the lower bound is 1. Thus we can derive that the close neighbourhood of a single vertex already occupies the majority of vertices. This means, for this threshold, the directed graphs that guarantee majority dominating opinion diffusion have to be very dense.

Furthermore, we characterize majority dominating opinion diffusion that stabilizes at time 1, because, in many real-time applications, the rapid convergence of an opinion diffusion is imperative. As a particular case for Proposition 4, we have that opinion diffusion is majority dominating and stabilizes at time 1 for all initial profiles iff for all \(S \subseteq \mathcal{N} \) with cardinality greater than \(n \cdot T \), it is a level 1 controlling set for \(\mathcal{N} \). We can show that, for this to happen, the indegree of all vertices has to be greater than \(n - 1/(1 - T) \) when \(n \cdot T \) is an integer and otherwise greater than \((n - n \cdot T)/ (1 - T) \).
Proposition 7 confirms that we can characterize the one-step convergence of majority dominating opinion diffusion through bounding the indegree of vertices. For illustration, let \(T \) be \(1/2 \). Then the indegree of a vertex has to be greater than \(n - 2 \) if \(n \) is even and greater than \(n - 1 \) if \(n \) is odd. In other words, an vertex can only tolerate one missing incoming edge if \(n \) is even and if \(n \) is odd, it cannot tolerate any missing incoming edge, that is the directed graph has to be complete.

So far our focus has been on lifting the initial majority opinion to the unanimous opinion. But what if there is no majority opinion to begin with? Majority dominating rules out the possibility of an initial minority opinion becoming the unanimous opinion, but nothing is said about those without a majority opinion. For the rest of this section, we look into such opinion diffusions.

Since, in an opinion diffusion, the individuals aggregate their opinions through majority voting, if there is no majority opinion to begin with, one of the most sensible thing to do is for them to hold on to their initial opinions. That is an opinion diffusion stabilizes and the stabilized opinion profile is the initial one, whenever there is no initial majority opinion. For the ease of presentation, we denote such property of opinion diffusion as tie preserving.

It is not hard to see that, an opinion diffusion is tie preserving iff it stabilizes at time 0. It then follows from Lemma 5 that ensuring the property of opinion diffusion as tie preserving.

Proposition 8. \(O^D = (G, T, O^0) \) is tie preserving for all \(O^0 \) iff \(S \) is a resistant set for all \(S \subseteq N \) with \(n \cdot (1 - T) \leq |S| \leq n \cdot T \).

By taking advantage of the properties of resistant set we can also characterize tie preserving by bounding the indegree of vertices. That is the indegree of all vertices has to be either no more than \(1/(1 - T) \) or no less than \([n \cdot T]/T \).

Proposition 9. \(S \) is a resistant set for all \(S \subseteq N \) with \(n \cdot (1 - T) \leq |S| \leq n \cdot T \) iff either \(d(i) \leq 1/(1 - T) \) or \(d(i) \geq [n \cdot T]/T \) for all \(i \in N \).

Proof. \(\Leftarrow \): Suppose, for all \(i \in N \), either \(d(i) \leq 1/(1 - T) \) or \(d(i) \geq [n \cdot T]/T \). We first show that for all \(S \) with \(n \cdot (1 - T) \leq |S| \leq n \cdot T \), \(d(S)/d(i) \leq T \) for all \(i \in N \setminus S \). Let \(S \) be such that \(n \cdot (1 - T) \leq |S| \leq n \cdot T \), and \(i \in N \setminus S \). Then there are two cases.

Case 1, \(d(i) \leq 1/(1 - T) \): Then \(d(S)/d(i) \leq (d(i) - 1)/d(i) = 1 - 1/(1 - (1/(1 - T)) = T \).

Case 2, \(d(i) \geq [n \cdot T]/T \): Then, since \(|S| \leq n \cdot T \), we have \(d(S)/d(i) \leq [n \cdot T]/d(i) \leq [n \cdot T]/([n \cdot T]/T) = T \).

Now let \(S \) be such that \(n \cdot (1 - T) \leq |S| \leq n \cdot T \). Then \(n \cdot (1 - T) \leq |N \setminus S| \leq n \cdot T \). By the above result \(d_{N \setminus S}(i)/d(i) \leq T \) for all \(i \in S \). Since \(d(i) = d_{N \setminus S}(i) + d(S) \), we have \(d(S)/d(i) = (d(i) - d_{N \setminus S}(i))/d(i) = 1 - d_{N \setminus S}(i)/d(i) \geq 1 - T \). Moreover, by the above result, \(d(S)/d(i) \leq T \) for all \(i \in N \setminus S \). Therefore \(S \) is a resistant set.

\(\Rightarrow \): Suppose for all \(S \) with \(n \cdot (1 - T) \leq |S| \leq n \cdot T \), \(S \) is a resistant set. This means for all \(i \in N \setminus S \), \(d(S)/d(i) \leq T \) for all such \(S \). Let \(i \in N \) be such that \(1/(1 - T) \leq d(i) \leq [n \cdot T]/T \).

Case 2, \(d(i) > n \cdot T \): Then there is \(S \) such that \(|S| = [n \cdot T] \), \(i \notin S \), and \(I^{-}(i) \subseteq \{S \} \), which implies \(d(S) = d(i) - 1 \) and \(d(S)/d(i) \leq T \). It follows from \(d(S) = d(i) - 1 \) and \(d(S)/d(i) \leq T \) that \(d(i) \leq 1/(1 - T) \).

For illustration, let the threshold be \(1/2 \). Then the indegree of all vertices has to be either no more than 2 or no less than \((n - 1) \) if \(n \) is odd (resp. even). In other words, for any individual, either almost no other individuals influence it or almost all the other individuals influence it.

5 Related Work

Traditionally, the process of information exchange among a network of individuals is studied in economics and social sciences [16] for which many formal models such as the DeGroot model [10] and the threshold model [15] are proposed. In artificial intelligence, the process has been investigated from the standpoints of belief revision and merging [22, 23, 7, 8, 24], reasoning about knowledge and belief [17], and more intensitively multilateral systems [1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 14].

The current work is mostly inspired by the recent endeavours in multilateral systems on opinion diffusion and in particular those of [4, 9, 14]. [14] works with a version of opinion diffusion in which the individuals may apply different methods in aggregating opinions on multiple issues. Most significantly, they show that if the underlying network is without a cycle (excluding self-loop) and every individual’s aggregation method satisfies a monotonicity property, then the opinion diffusion converges w.r.t. all initial opinion profiles. Furthermore, they show that in the case that the individuals follow the majority rule in aggregating opinions, then convergence can also be guaranteed with cycles in the underlying network, provided that the cycles are vertex-disjoint, and all their nodes have an even number of incoming edges. [4] extends the work by applying various forms of constraints on the possible opinion profiles. With a similar setting, [9] emphasises on stabilisation. They propose to characterize opinion diffusion from a modal logic perspective and form several stabilisation conditions in terms of properties of winning and veto coalitions that can be expressed in the modal logic of \(\mu \)-calculus.

The current work also finds connections in discrete mathematics [3, 18, 20, 21]. These works assume a network of individuals formalized as an undirected graph, and tries to identify a subset of individuals that can force all individuals to have the same opinion as theirs in an opinion diffusion. They call such subsets of individuals dynamic monopolies which are the sets that control \(N \) in our terminology. Many efforts have been given to construct graphs which contain a small dynamic monopoly and to establish lower bound on the size of dynamic monopolies. For instance, [3] proves that for every \(n \), there exist a graph with at least \(n \) vertices containing a dynamic monopoly of size 18.

The current work is most closely related to that of [18] which identifies graphs that ensure majority dominating opinion diffusion and they call such a graph majority consensus computer. Assuming undirected graphs and a fixed threshold of 1/2, they provide a variety of results including that the diameter of a majority consensus computer is less than four, has a trivial min-cut and a non-unique max-cut. Since we work with directed graphs and arbitrary threshold, some of our results generalize theirs (i.e., Proposition 6).
6 Conclusion
In this paper, we motivated, formalized and studied the majority to unanimity problem of opinion diffusion. We first gave a thorough investigation on the notion of controlling set which is proven to be useful in deriving network features that lead to various desirable behaviours of opinion diffusion. By exploiting the notion of controlling set, we articulated conditions for guaranteeing the majority dominating property through bounding indegree of vertices and the size of some neighbourhoods. For future work, we plan to generalize our results to the asynchronous mode of opinion update and multiple issues with constraints on the possible opinion profiles.

Acknowledgements
This work was partially supported by NSFC under grant 619766153.

REFERENCES