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Abstract. Continual lifelong learning requires an agent or model to
learn many sequentially ordered tasks, building on previous knowl-
edge without catastrophically forgetting it. Much work has gone to-
wards preventing the default tendency of machine learning mod-
els to catastrophically forget, yet virtually all such work involves
manually-designed solutions to the problem. We instead advocate
meta-learning a solution to catastrophic forgetting, allowing AI to
learn to continually learn. Inspired by neuromodulatory processes
in the brain, we propose A Neuromodulated Meta-Learning Algo-
rithm (ANML). It differentiates through a sequential learning pro-
cess to meta-learn an activation-gating function that enables context-
dependent selective activation within a deep neural network. Specif-
ically, a neuromodulatory (NM) neural network gates the forward
pass of another (otherwise normal) neural network called the predic-
tion learning network (PLN). The NM network also thus indirectly
controls selective plasticity (i.e. the backward pass of) the PLN.
ANML enables continual learning without catastrophic forgetting at
scale: it produces state-of-the-art continual learning performance, se-
quentially learning as many as 600 classes (over 9,000 SGD updates).

1 Introduction

Intelligent animals are typically able to solve new problems without
corrupting hard-won knowledge of how to solve previously encoun-
tered problems. On the other hand, artificial neural networks have
long been known to suffer from catastrophic forgetting (CF) [12],
in which learning to solve new tasks rapidly degrades previously
acquired capabilities. This problem is particularly acute for contin-
ual learning systems that encounter tasks sequentially. For that rea-
son, deep learning’s success stories have come in the non-sequential
setting, with data sampled independently and identically distributed
(i.i.d.) from the full dataset (aka interleaved, or shuffled, training). A
number of solutions to catastrophic forgetting have been developed,
but they are typically manually designed.

One such solution is to use replay methods [37], which allevi-
ate forgetting by saving prior experiences and mixing them with
newly encountered data to approximate interleaved (i.e. not sequen-
tial) training. However, the ability to interleave memories of all previ-
ously seen tasks between training examples on new tasks is expensive
in both storage and computation, and does not scale to many tasks.

A second class of solutions attempt to limit the extent to which
parameters can be modified in response to new data, which we refer
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to as selective plasticity. But such approaches typically involve man-
ually designed heuristics that control such plasticity. In the extreme,
all previously learned weights can be frozen and additional capac-
ity can be added to the network to solve new tasks [36]. Similarly,
hand-designed modules within an overparameterized network can be
frozen when they are used to solve a task [8]. This approach also
scales poorly as the number of tasks become large, and, by design,
old pathways cannot improve based on information from other tasks.

Rather than completely freezing its previously learned value, elas-
tic weight consolidation (EWC) [19]) alters the plasticity of a given
parameter (indirectly, via regularization penalties) in proportion to
the manually-selected criteria of Fisher information, which approx-
imates how important each parameter was for solving prior tasks.
Those parameters deemed unimportant are made comparatively more
susceptible to change, thus allowing the network to adapt to new
problems while reducing corruption of existing knowledge. Other ap-
proaches similarly seek to modulate learning via task-specific synap-
tic importance [45], via the top-down attention mechanism of con-
trastive excitation backpropagation [20, 46], by interleaving pseudo
examples generated from the current weights to limit plasticity [25],
by employing L2 regularization on the weight changes between
tasks [24], or by combining regularization and the Copy Weight with
Reinit strategy [27, 30].

Another approach to mitigate CF is to directly incentivize the cre-
ation of maximally sparse or disjoint representations [11, 26], with
the goal of minimizing interference between activations. Such sparse
representations indirectly affect which parameters get updated dur-
ing backpropagation, thereby allowing the network to avoid forget-
ting. However, a perspective we advocate is that, when possible, we
should not optimize for one thing (e.g. sparse representations) and
hope doing so leads to another thing (in this case, reduced catas-
trophic forgetting): Instead, we should optimize directly for what we
want (here, learning without forgetting).

Rather than trying to manually implement a solution to CF or
adding auxiliary losses we believe will alleviate CF, in this work we
directly optimize to learn without forgetting. In other words, we har-
ness meta-learning to allow the network to learn to continually learn.
However, instead of vanilla meta-learning (e.g. MAML [9] with tra-
ditional neural networks), a contribution of this paper is introducing
a new network architecture that improves the ability to learn to con-
tinually learn. Specifically, we have one network, conditioned on the
input, gate the activation of another network (i.e. context-dependent
gating), resulting in selective activation of that second network. Gat-
ing functions for such conditional computation [3] have been learned
via the REINFORCE algorithm [2] and at scale via a standard back-
propagation in a sparsely-gated mixture-of-experts [38], but these
works focus on computational capacity and efficiency rather than
catastrophic forgetting.
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One prior work [32] showed the promise of gating mechanisms for
mitigating catastrophic forgetting, including high performance for up
to 500 classes, although in an easier problem setting in which the
network is explicitly told which task it is being trained or tested on,
instead of having to learn that too. In realistic applications, such as
a robot learning in the world, there will not be clear boundaries be-
tween tasks nor an oracle to provide task labels. Additionally, in this
prior work, which neurons were gated was randomly chosen. Finally,
the random gating was dependent on the task, not the data itself. In
this work we remove the need to tell the network which task it is
being trained or tested on, and we meta-learn the activation gatings,
which provides the opportunity to substantially improve performance
over random gating and enables the gatings to be dependent on the
data itself. Finally, our learned masks are continuous and not binary
(as in the prior work), further increasing the potential power of our
method over binary, random gating.

While all of the above approaches are interesting and mitigate CF
to some extent, they nevertheless fall into the category of manual
approaches to reduce CF. That is, to solve a challenging problem
they try to identify the required building blocks and how to com-
bine them, and then let machine learning tune parameters within this
complex assembly [5]. However, a clear trend in machine learning is
that manually designed solutions give way to entirely learned solu-
tions, which ultimately perform much better, once sufficient compute
and data are available. That has been true, for example, for learning
features (e.g. in computer vision or speech recognition) [21], neural
architectures [47, 35], and hyperparameters [29]. An alternative to
the manual path to AI that is in line with this trend of replacing hand-
designed pipelines with learned solutions is to develop AI-generating
algorithms [5], which try to learn as much of the solution as possi-
ble, including learning the learning algorithms themselves via meta-
learning.

The meta-learning approach directly sets the ultimate goal (here:
the ability to continually learn without forgetting) as a meta-loss
and employs the power of machine learning to produce an AI algo-
rithm well suited to it. An example is Model-Agnostic Meta-Learning
(MAML) [9], which searches for an initial set of weights for a neu-
ral network that, when subjected to SGD, rapidly learns a new task.
It does so by differentiating through many steps of inner-loop SGD
learning to calculate the outer-loop gradient of how to improve the
weight initialization.

We are aware of only one prior work that optimizes to solve catas-
trophic forgetting via meta-learning. We were inspired by it, build
off of it, compare to it, and adopt its experimental protocol. Online
aware Meta-Learning (OML) [17] employs a MAML-style meta-
learning algorithm to produce a representation (set of neural network
layers) that, when frozen and used by additional, downstream neu-
ral network layers, minimizes catastrophic forgetting in those down-
stream layers. Excitingly, while sparsity in this representation layer
was not explicitly encouraged, OML produced not only sparsity, but
a better version of it. Explicitly encouraging sparsity yields many
dead neurons (those that never fire across the dataset), whereas OML
optimized representations had no dead neurons [17]. This ability
to search for what is empirically effective, rather than what is be-
lieved to be effective, distinguishes meta-learning approaches from
manual-path approaches. OML provided a substantial advance over
the prior state of the art, enabling continual learning over 200 sequen-
tial classes. Because OML is in line with our vision of meta-learning
solutions to hard machine learning problems, and because it performs
so well, we seek to further improve upon it.

Rather than meta-learning representations as in OML, we meta-

learn a context-dependent gating function (a neural network, called
the neuromodulatory network) that enables continual learning in an-
other neural network (called the prediction network) (Fig. 1). The
neuromodulatory network has the flexibility to explicitly turn on and
off activations in subsets of the prediction network conditioned on
the input. We call this mechanism selective activation. Selective ac-
tivation in turn enables selective plasticity because the strength of
backward gradients is a function of how active neurons were during
the (modulated) forward pass, indirectly controlling which subset of
the network will learn for each type of input. By leveraging meta-
learning to optimize when and where to gate activations to maximize
continual learning, our approach explores the potential for solutions
beyond hand-designed selective plasticity strategies.

Our harnessing of selective activation via context-dependent gat-
ing and selective plasticity is inspired by neuromodulatory processes
in the brain. These include inhibitory mechanisms that become ac-
tive in response to specific environmental stimuli [32] and the sup-
pression of synaptic plasticity [13] or activation [1] in the presence
of neuromodulatory signals. There is prior work in machine learn-
ing that harnesses neuromodulation techniques [7, 16, 39, 40, 42],
but in such work neuromodulation directly modulates learning rates,
instead of the approach taken in this work of directly modulating acti-
vations and thus indirectly controlling learning. Modulating learning
can ensure that information about one task can be localized to only
the parts of the network relevant to that task. However, an insight in
this work is that modulating learning alone is not enough, because
there can still be interference between the tasks during the forward
pass. For example, even if an agent’s chess playing and bike rid-
ing networks are physically separated such that learning in one does
not corrupt information in the other, neither task will be performed
well if both are actively producing muscle outputs when performing
either task. The insight behind why the approach in this work of di-
rectly modulating activations (and indirectly modulating learning) is
superior is because it allows optimization to reduce interference in
both the forward and backward passes of the network.

2 The Problem Formulation

One goal of continual learning is to solve catastrophic forgetting,
meaning learning new tasks without forgetting of already learned
skills. More precisely, we want to be able to learn a large number of
tasks T1..n sequentially from a common domain T , but in such a way
that after sequential learning average performance on all T1..n tasks
is high. Following [17], the experimental domain T is the Omniglot
few-shot learning dataset. Each task Ti is a class of characters (each
with k and v unique training and validation instances, respectively).

Before continuing, it is helpful to establish terminology for meta-
learning, as it is complex. Because we are learning to learn, learn-
ing happens both on the outer loop and the inner loop. The goal is
to have the outer loop take steps to make each round of inner-loop
learning better. The phase in which the outer loop takes optimization
steps to improve the learning ability of the inner loop is called meta-
training. Once meta-training has concluded, we then want to test the
quality of the inner-loop learner, a phase called meta-testing. During
meta-training, within each inner loop, something must be learned,
which is called meta-training training. For example, the inner-loop
agent might be a normal neural network learning via SGD to classify
MNIST examples. During meta-training training, it is shown mul-
tiple MNIST samples (and given the correct label) and SGD steps
are applied to improve accuracy. After each inner-loop iteration of
meta-training training, the trained agent must be evaluated, which
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we call meta-training testing. This meta-train testing error is the
meta-training loss to be minimized. After meta-training completes,
we switch to meta-testing, wherein we need to evaluate how well
the meta-learned learner performs. Again, we need a training and
testing phase, which are called meta-test training and meta-test test-
ing, respectively. We have found this MTT (for meta-train/test train-
ing/testing) terminology essential for clear communication and ad-
vocate the meta-learning community adopt it.

A naive application of meta-learning to this problem would in-
volve performing the entire learning process at each iteration of the
inner loop: i.e. learn a whole sequence of n× k characters, evaluate
the network’s validation performance on n × v validation instances
(the meta-training loss), backpropagate the gradient of this validation
error all the way through the learning process to the initial weights,
perform one step of gradient descent on these initial weights, and re-
peat. However, when n is high (e.g. 600), this approach is unfeasible
due to limitations with modern algorithms (e.g. unstable gradients)
and hardware (e.g. memory).

The OML framework [17] introduced an elegant solution to this
problem by setting the meta-loss to be an approximation of this
true, desired meta-loss. The idea is to measure after each new class
whether (1) it was learned and (2) whether old knowledge was lost.
After each newly encountered class (k instances), the meta-loss is
calculated as the error on the newly learned class and the error on
a random sample of characters from all meta-train training classes
(called the remember set). Ideally this remember set would only be
previously seen meta-train training set classes, but we follow the
choice of [17] in sampling from all meta-test training classes). The
remember set is used in meta-training only.

As a result, the network is meta-trained to learn a potentially large
number of different classes without catastrophic forgetting, even
though each inner-loop only involves learning k instances of one
character class, which makes the process computationally tractable.
We use the same meta-learning procedure for training our novel ar-
chitecture.

The experiments employ the Omniglot few-shot learning dataset,
which has 1,623 character classes [22]. 660 classes are held out for
meta-testing. The remaining 963 are for meta-training. For meta-train
training, k = 20, i.e. 20 labeled instances of each character are pro-
vided. The remember set randomly samples from these same 20 in-
stances per class. In meta-testing (described below), 15 instances of
each character are used for meta-test training, while the remaining 5
instances are held out for meta-test testing.

3 A Neuromodulated Meta-Learning Algorithm
(ANML)

While meta-learning provides the opportunity to learn the solution
to a problem instead of manually designing it, we still must decide
on the search space, including which materials the neural networks
are made of [5]. To attempt to solve catastrophic forgetting, here we
propose learning a neuromodulatory network, which is a context-
dependent function that gates the forward pass of another (otherwise
normal) neural network (Fig. 1). This setup allows different subnet-
works within the normal network to be used for, and learn from, dif-
ferent types of tasks. It also allows the model to interpolate between
tasks it has not previously encountered. By meta-learning, we auto-
mate, rather than presuppose, the contexts and locations within the
network that should be active at any given time, and to what degree.
We call this approach A Neuromodulated Meta-Learning algorithm
(ANML).

Figure 1: The architecture for A Neuromodulated Meta-Learning al-
gorithm (ANML). The prediction network (red) is a normal neural
network updated in the inner loop via SGD (or similar). The neuro-
modulatory network (blue) produces an element-wise gating of the
prediction network’s forward-pass activations, enabling selective ac-
tivation (i.e. conditional computation) and indirectly enabling selec-
tive plasticity by affecting the gradient updates of the prediction net-
work. The initial weights (at the start of each inner loop) of both
the neuromodulatory and prediction network are meta-learned in the
outer-loop of optimization. The weights of the neuromodulatory net-
work are not updated in the inner loop, but those of the prediction
network are. The example image is from the Omniglot dataset, which
is the experimental domain for the experiments in this paper.

3.1 ANML Architecture
OML [17] divides a single deep neural network into two distinct
components. The first 6 layers, which are convolutional, have meta-
learned parameters that are frozen (not changed) during the inner
loop. This subnetwork is called the representation learning net-
work (RLN). The final 2 layers, which are fully connected, have pa-
rameters that meta-learn their initial weights in the outer-loop, and
then are updated during each inner-loop via SGD. See Javed and
White [17] for details. This subnetwork is called the prediction learn-
ing network (PLN).

ANML takes a different approach, with two parallel neural net-
works: a neuromodulatory (NM) network and prediction network
(Fig. 1). The weights for both are meta-learned in the outer loop.
The weights of the neuromodulatory network are not updated in the
inner loop, but those of some, but not all, of the prediction network
are (which prediction network weights are updated differs for meta-
training and meta-testing, as described below). To keep overall archi-
tecture and parameter sizes similar to [17], each of these networks
has 3 convolutional layers (each followed by a batchnorm layer [15])
and one fully connected layer. The final layer of the neuromodula-
tory network is of the same size as the input to the final layer of the
prediction network (i.e. the flattened latent representation output by
the final convolutional layer in the prediction network). The neuro-
modulatory output is used to gate the latent representation of the pre-
diction network (via element-wise multiplication) during a forward
pass. All activation functions are ReLUs except the gating multiplier
is restricted to the range [0, 1] via a sigmoid, meaning that in this
work it can only suppress activations of the prediction network (in-
stead of negate or amplify them).

3.2 Meta-Training Learning Procedure
The ANML algorithm (Algorithm 1)4 consists of an inner loop
nested inside an outer loop of optimization. Within each inner loop, a

4 Code available at github.com/uvm-neurobotics-lab/ANML
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copy θP0 of the prediction network weight initializations θP is trained
for 20 SGD iterations – producing θP1 ...θP20 – on the training set of a
single Omniglot meta-training class Tn.

During each of these 20 forward passes, the inputs to the predic-
tion network’s final layer are gated by neuromodulatory weights θNM,
enabling selective activation by modifying the outputs of the predic-
tion network during the forward pass.

During each backwards pass, the gating of the prediction network
naturally has the effect of reducing the gradients flowing back to-
wards a subset of its weights, thereby modifying the SGD update
and resulting in selective plasticity. The neuromodulatory weights
θNM are not updated within the inner-loop.

Following the 20 sequential updates on this single Omniglot meta-
training class, a meta-loss is calculated by making predictions using
the final post-inner-loop-training weights (θP20) on all 20 images from
the single Omniglot class just trained on plus a random sample of 64
character instances from the set of all meta-training classes (i.e. from
the remember set). This meta-loss function is referred to as the On-
line aware Meta-Learning (OML) objective [17], and incentivizes the
meta-learning of networks that can learn a new tasks over many steps
of SGD without forgetting how to solve previously learned tasks.

We then backpropagate this meta-loss back through the 20 steps
of SGD updates (following the style of MAML [9]) to calculate the
gradients of the initial prediction network weights θP and the neu-
romodulatory network weights θNM, and then take an outer-loop gra-
dient update step on each of them. This outer-loop step is taken via
Adam [18], while gradient updates for all inner-loop updates are via
SGD with a fixed learning rate. This step constitutes the completion
of the first outer-loop iteration. The next outer-loop iteration then be-
gins by copying the prediction net weights and conducting inner-loop
training starting with them on 20 instances from the next Omniglot
meta-training class. For the experiments in this paper, this process
continues for 20,000 outer-loop meta-training iterations.

Following OML [17], when a copy of the prediction network is
made at the start of each meta-iteration, the weights in the final layer
that lead into the output node for the single Omniglot class in the
upcoming meta-train training trajectory are initialized randomly in
that inner-loop copy (rather than being initialized with their meta-
learned weight initialization). This ensures that the inner-loop learner
has not already converged to a good solution to classifying images
in the upcoming trajectory through its initial-weight-meta-learning
alone, and will result in larger gradient steps during backpropagation
– both of which more closely match the situation that will be en-
countered during meta-testing, when each class encountered is new.
Note that reinitializing the entire final layer would not be ideal, as it
would not enable the network to make intelligent predictions about
the remember set (which contains classes not trained on during this
inner-loop). This weight reinitialization procedure is not employed
during meta-test-training.

3.3 Performance Evaluation in Meta-Testing
Following the completion of meta-training, in the meta-test phase
(Algorithm 2) the resulting prediction and neuromodulatory net-
works are evaluated on their ability to learn many tasks while mini-
mizing catastrophic forgetting.

Starting from the meta-learned prediction network weight ini-
tialization θP and neuromodulatory network θNM, the weights of
the fully connected layer in the prediction network (and only those
weights) are fine-tuned on meta-test classes. This idea of freezing
the weights of all but the last few layers of the prediction network

Algorithm 1 A Neuromodulated Meta-Learning algorithm (ANML)

Require: T ← trajectory of N sequential meta-training tasks
Require: θNM ← weights of the neuromodulatory network
Require: θP ← weights of the prediction network
Require: α, β ← learning-rate hyperparameters

1: initialize θNM, θP

2: for n = 1, 2, . . . do . meta-learning outer-loop
3: Straj = Tn . trajectory for inner-loop training
4: Srem ∼ T . sample instances from all tasks to remember
5: θP0 = θP . create inner-loop copy of prediction net
6: for i = 1, 2, . . . , k do . task-learning inner-loop
7: θPi ← θPi-1 − β∇θPi-1

L(θNM, θPi-1, Straj) . SGD on θPi-1
8: end for
9: θNM, P ← θNM, P − α∇θNM, PL(θNM, θPk , Straj , Srem)

. meta-update on θNM, θP w.r.t. final inner-loop θPk
10: end for

Algorithm 2 Meta-Testing Evaluation Protocol

Require: T ← trajectory ofN unseen sequential meta-testing tasks
Require: θNM ← meta-learned weights of the neuromodulatory net
Require: θP ← meta-learned weights of the prediction network
Require: β ← learning-rate hyperparameter

1: Strain = [ ]
2: for n = 1, 2, . . . , N do
3: Straj ∼ Tn . get next task training trajectory
4: Strain = Strain + Straj . add to meta-test train set
5: for i = 1, 2, . . . , k do
6: θP ← θP − β∇θPL(θNM, θP , Straj) . SGD on θP

7: end for
8: end for
9: record L(θNM, θP , Strain) . eval final θP on meta-test train set

10: Stest = T − Strain . held-out meta-test test set
11: record L(θNM, θP , Stest) . eval final θP on meta-test test set

follows [17]. These weights are fine-tuned for q (here, 15) instances
of each meta-test class (here, the 600 Omniglot classes that were not
used during meta-training). Unlike meta-training, in meta-test train-
ing, a new copy of the prediction network is not made for each new
class. Thus, in our experiments, the final weights from meta-training
are fine-tuned during meta-test training with 9,000 iterations of SGD.
The model therefore undergoes 8,985 fine-tuning updates since it last
saw an instance from the first Omniglot meta-test training class. Us-
ing these final weights (θP9000, θNM), all 9,000 meta-test training in-
stances are reevaluated to assess the meta-test training performance
of the model (i.e. how well it can learn the training set without forget-
ting). Furthermore, the final model (θP9000, θNM) is evaluated on five
held-out instances from each of the 600 meta-test classes (the meta-
test test set), which measures the model’s ability to generalize what
it has learned to novel instances of each class. In short, the meta-test
training performance shows the ability to memorize without forget-
ting, and the meta-test test performance reveals the ability to conduct
continual learning in a way that allows generalization, which is what
we ultimately care most about.

Following OML’s evaluation protocol [17], this procedure is re-
peated for various sequence lengths of meta-test classes (trajecto-
ries of 10, 50, 75, 100, 150, 200, 300, 400, 500, and 600 Omniglot
classes) to show how the models scale to longer sequential task tra-
jectories. A hyperparameter search is performed for each sequence
length to set the learning-rate β for its inner-loop updates.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



3.4 Baseline Controls

To help analyze the effectiveness of ANML, we compare it to a se-
ries of controls. All architectures in the control treatments share ap-
proximately the same numbers of total parameters as ANML (∼6M).
They do not include a neuromodulatory network, but instead have the
OML architecture (described in Section 3.1). Empirically, we found
that the batchnorm layers included in ANML were detrimental to
the performance of OML, so they were omitted from these controls
(consistently with [17]).

Training from Scratch: Consistently with traditional machine
learning, this control involves no meta-training and simply randomly
initializes a prediction network at the start of meta-test training time.
In this treatment the entire network can learn, rather than fine-tuning
only the fully-connected layers, as the network does not include any
learned features at the start of meta-test training.

Pretraining and Transfer: The previous control is perhaps unfair
because ANML gets to learn from the meta-training set before being
evaluated on the meta-test set. The Pretraining and Transfer control
tries to address this inequity. Consistently with traditional transfer
learning for deep neural networks [44], this control pretrains i.i.d.
on the meta-training training image set. The number of images seen
during pretraining is set to be equivalent to the numbers of instances
seen during meta-train training and meta-train testing (1.68M image
evals).

The weights learned during this pretraining phase are transferred
to the meta-test phase, where the fully connected layers are fine-
tuned on the meta-test training trajectory.

Online aware Meta-Learning (OML): OML [17] represents the
current state-of-the-art on this problem domain. ANML has the same
meta-learning procedures as it, with the exception that OML does not
include a neuromodulatory network (θNM) for selective activation,
and instead meta-learns the weights of the convolutional layers only,
which they call the Representation Learning Network (RLN) [17]).
The RLN weights in OML are frozen at meta-test time and within
each inner-loop of meta-train training: they are modified only via the
outer-loop updates during meta-training. Similarly, ANML freezes
the convolutional weights and batch norm weights of the predic-
tion network during meta-testing, only updating the weights of the
fully connected layer of the prediction network during this meta-
test phase. However, in contrast to OML, in ANML no weights in
the prediction network are frozen during meta-train training. Addi-
tionally, as with the parameters in OML that are only meta-learned
(the RLN), the weights of the neuromodulatory network in ANML
are frozen during both meta-testing and meta-train training (they are
only updated via outer loop steps during meta-training).

The meta-test procedure for the original OML algorithm includes
fine-tuning both fully-connected layers in the prediction network at
meta-test time, while freezing the 6 convolutional layers. However,
fine-tuning two layers (vs. one) leads to approximately 50% more
fine-tuned parameters (∼3M) compared to the ANML architecture
(which fine-tunes∼2M parameters). To counterbalance this, we also
examine a treatment that fine-tunes only the final layer of OML,
which results in about 50% fewer fine-tuned parameters (∼1M) than
in ANML. We call this control treatment OML with One-Layer Fine-
Tuned (OML-OLFT). The OML-OLFT meta-testing procedure of-
ten (but not always) results in improved performance compared to
the original OML, but never results in OML-OLFT outperforming
ANML. Because it is the published previous method, we refer to the
original OML formulation when making statistical comparisons to
OML in the text (unless otherwise noted), but we show both in plots.

Interleaved-Training Oracles: To understand the limits of this
problem domain, the “Oracle” version of any of the above algorithms
keep their same meta-training procedure, but at meta-test time are
presented with an i.i.d. sampling of all the classes from the meta-test
training set. These treatments thus examine the ability of an algo-
rithm to learn without the challenge of catastrophic forgetting from
sequential/continual learning, and provide an upper bound on the per-
formance on a model with respect to avoiding catastrophic forgetting.

4 Results

4.1 Continual Learning at Scale

To our knowledge, the longest continual learning trajectories re-
ported to date that exhibit robustness to catastrophic forgetting in-
volve learning 200 tasks sequentially and come from OML [17].5

Here we push that further, testing whether 600 sequential tasks can
be learned – seeking sequential learning across up to 9,000 SGD up-
dates without catastrophic forgetting.

For each treatment, we meta-train 10 independent models on the
same set of 963 meta-training classes. At the end of the meta-test
training trajectory, we re-evaluate the trained models on all of the
meta-test training data seen over the trajectory to see how well they
resist catastrophic forgetting. ANML significantly outperforms OML
for meta-test training trajectories at all lengths tested (all p ≤ 1.26×
10−8; all p-values computed using the Mann-Whitney U test [31]).

Consistent with the expectation that standard neural networks suf-
fer from catastrophic forgetting, both pretraining-then-transferring
learned representations, and training randomly initialized networks
from scratch have significantly worse meta-test training accuracy
than either OML and ANML for all class sequence lengths tested
(all p ≤ 6.023 × 10−20), resulting in very low classification accu-
racy (Fig. 2; < 3% on trajectories of ≥ 50 sequential classes for
Scratch, and < 3% on trajectories of ≥ 400 sequential classes for
Pretrain)

Interestingly, the OML-OLFT treatment, which fine-tunes fewer
parameters than standard OML, has higher meta-test training accu-
racy than OML on trajectories of 300 or more classes, but performs
significantly worse on this metric for trajectories of up to and includ-
ing 200 classes. All p ≤ 1.87 × 10−13 up to 200 classes for OML
relative to OML-OLFT; and all p ≤ 1.33 × 10−29 for trajectories
equal to 400 or more for OML-OLFT relative to OML.

We now examine meta-test testing, which involves the more dif-
ficult challenge of learning (without forgetting) in a way that gener-
alizes to never-before-seen instances of classes learned during meta-
test training. For each of the 10 meta-training trials of each algo-
rithm, we evaluate the meta-trained model on 10 independent meta-
test training trajectories, each with a random set and order of tasks
drawn from the 660 meta-test classes that were held out from the
meta-training dataset. For trajectories of any length, ANML has sig-
nificantly better meta-test test accuracy than any other treatment in-
cluding OML (Fig. 3, p ≤ 2.58 × 10−12). After meta-test training
on 600 classes, ANML is able to correctly classify a mean of 63.8%
of held-out meta-test test instances, compared to the 18.2% for OML
and 44.2% for OML-OLFT. Furthermore, ANML significantly out-
performs chance (p < 7.96 × 10−6) on 99.3% of classes over the
600-task sequence, including many classes that it has not seen for

5 Sequences up to 500 have been tried, but only when providing a knowledge
of which unique task is being solved directly to the network instead of
requiring it to learn that too [32].
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Figure 2: Meta-test training classification accuracy. The x-axis shows
the number of sequential tasks/classes in the meta-test training tra-
jectory. Accuracy is calculated with the final prediction network pa-
rameters after training sequentially on that full meta-test training tra-
jectory, and on all instances in the that trajectory (i.e. the meta-test
training set).

hundreds of tasks (thousands of SGD updates), demonstrating learn-
ing without forgetting catastrophically6.

At meta-test time, the OML-OLFT treatment is significantly infe-
rior to OML for trajectories of up to 150 classes (p ≤ 6.23× 10−8),
but is better able to scale to longer trajectories, outperforming OML
when sequentially learning 300 or more classes (p ≤ 4.69 × 10−12

for ≥ 300 classes). While OML-OLFT fine-tunes fewer parameters
during meta-test training, additional experiments explore fine-tuning
of a greater number of parameters for both the OML and ANML net-
works during meta-test training find that ANML maintains a greater
proportion of its performance when some or all additional layers are
also fine-tuned7.

Given that ANML significantly reduces catastrophic forgetting, a
natural question to ask is what the upper-bound on performance is
when catastrophic forgetting isn’t a problem – that is, when data is
presented non-sequentially. The ideal version of any model, or “ora-
cle”, can be approximated by training it in an interleaved fashion;
replacing the sequential trajectory of correlated images with i.i.d.
samples from the set of all images in this sequence. As expected,
the i.i.d. oracle version of each algorithm significantly outperforms
its sequentially-trained counterpart (Fig. 4, p ≤ 1.27 × 10−34 for
all treatment vs. oracle pairs for sequences of length 600). However,
the sequentially-trained version of ANML significantly outperforms
even the oracle versions of OML and the other algorithms at 600
classes (all p ≤ 1.93× 10−23). The only treatment that outperforms
ANML is the ANML-Oracle (for 600 classes, ANML-Oracle: 71%,
ANML 63.8%, p = 1.27 × 10−34). The finding that ANML pro-
duces models that perform better than traditional approaches even
when catastrophic forgetting is not an issue hints at the promise of
the ANML approach to also provide performance improvements to
traditional i.i.d. training tasks in addition to the continual learning
setting, which is an interesting area for future work.

Another useful metric is the relative drop in performance from
the i.i.d. oracle to the sequentially-trained version of each algorithm.

6 Figure available in supplementary material of arXiv manuscript
7 Figure available in supplementary material of arXiv manuscript

Figure 3: Meta-test testing classification accuracy. The x-axis shows
the number of sequential tasks/classes in the meta-test training tra-
jectory. Accuracy is calculated with the final prediction network pa-
rameters after training sequentially on that full meta-test training tra-
jectory, and the evaluation is on held-out (i.e. test) instances of the
meta-test classes. Thus, these meta-test test instances were not seen
during meta-training or meta-test training. For all trajectory lengths
tested, ANML significantly outperforms OML, the pretrained-and-
transfer networks, and models trained from scratch.

Figure 4: Meta-test testing classification accuracy vs. oracles. The
x-axis shows the number of sequential tasks/classes in the meta-
test training trajectory. Accuracy is calculated with the final predic-
tion network parameters after training on that full meta-test training
set i.i.d. for all oracle treatments (and after sequential training for
the ANML treatment). Accuracy is reported for held-out instances
of the meta-test classes not seen during meta-test training or meta-
training. ANML outperforms the i.i.d.-trained oracle versions of all
other treatments.

Presuming that the primary difference between these treatments is
the presence of catastrophic forgetting, the smaller the relative per-
formance drop between them, the more the sequentially trained ver-
sion of the algorithm has avoided catastrophic forgetting. Of the
relative drops in performance on trajectories of 600 classes for the
sequentially learned versions of training-from-scratch (99% relative
drop in performance from i.i.d. to sequential learning), pretraining-
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Figure 5: The sparsity of activations before (top row) and after (bottom row) the neuromodulatory gating signal (middle row) has been applied,
shown for three random inputs from the meta-test test set, and the mean across all images in the meta-test test set. Colorbars for subfigures are
individually normalized to better show min (blue) and max (yellow) activations. Note that post-NM activations are sparse for each individual
image, but near-uniformly distributed on average, revealing that NM helps to create sparse, orthogonal representations, and efficiently uses all
of its compute resources instead of creating wasteful “dead neurons.”

and-transferring (99%), OML (70.32%), OML-OLFT (27.2%), and
ANML (10%), ANML shows the smallest relative drop in perfor-
mance between the i.i.d. and sequentially-trained version (all p ≤
3.11 × 10−24 relative to ANML), further supporting the benefits of
ANML over the other algorithms for continual learning tasks. It is
remarkable to see such a small performance drop (only 10%) for
ANML between the i.i.d. and sequential version of the task, meaning
that ANML is solving most of the catastrophic forgetting problem on
this challenging test across 600 sequential tasks.

Traditionally, continual learning in neural networks involves see-
ing examples in a single continuous stream – therefore, the oracle
treatments described above see each meta-test training image exactly
once. That is one reason why the performance is so low for standard
deep learning techniques, such as training from Scratch and Pretrain-
ing & Transferring, even with i.i.d. sampling (Fig. 4). With additional
passes through the data, performance increases across the board. Af-
ter 20 epochs of i.i.d. training on the 600-class meta-test training
dataset, training from Scratch gets 61.8% accuracy on the meta-test
test set, while the Pretrain & Transfer control results in 48.66% ac-
curacy. While these accuracy levels may seem low, recall that the
Omniglot meta-test training set here contains 600 classes, each with
just 15 training instances. By comparison, the relatively high training
accuracies (e.g. 99.77% at 500 epochs of training [4]) on handwrit-
ten digits in the MNIST dataset [23] result from a dataset with just
10 classes, each with 6,000 training instances. Because the number
of training instances per class is low, the Scratch and Pretrain con-
trols overfit. Evidence of overfitting is that, while their test accuracy
is low, their performance on the meta-test training set is near-perfect
(for Scratch accuracy is 99.3%; for Pretrain & Transfer it is 98.9%).

In this context, it is remarkable how well ANML performs. With
just one pass through the data, and with the data ordered sequen-
tially instead of i.i.d., the accuracy of ANML (63.8%) is still higher
than the Scratch and Pretrain & Transfer 20-epoch, i.i.d. controls.
The performance of ANML further increases when it has the bene-
fit of training i.i.d for one epoch (Fig. 4; 71%). With 20 epochs, the
accuracy increases further, to 75.37% for ANML. ANML continues
to significantly outperform all other treatments with more epochs of

training8 (p = 3.38 × 10−12). It is an open, interesting, important
research question to figure out exactly why ANML outperforms the
controls even in the multi-epoch, i.i.d. setting.

4.2 The Meta-Learned Representations
Prior work has shown that encouraging sparse representations (e.g.
via an auxiliary loss) alleviates catastrophic forgetting [11, 12, 26].
One of the key findings of OML [17] was that, despite not explicitly
incentivizing representations to be sparse, when meta-learning di-
rectly for the reduction of catastrophic forgetting, the system learned
on its own to produce sparse representations. Here we investigate
whether sparse representations also arise in ANML without an ex-
plicit incentive for sparsity.

To examine the output of the neuromodulatory network, and how
its gating affects the sparsity of the prediction network’s representa-
tion, we analyze the activations of both networks in response to the
images in the meta-test test set. The prediction network’s represen-
tation layer prior to neuromodulation has a mean of 52.77% of neu-
rons active (defined as activations > 0.01). After neuromodulation,
the proportion of neurons in this layer that are active drops signifi-
cantly to 5.9% on average (p < 10−6). By comparison, the sparsity
of the representation in OML to these same images is 3.89%. The av-
erage number of neurons active in the last layer of the NM network
(which does the gating) is 56.9%. Finally, both OML and ANML
have 0% “dead neurons” at the representation layer during meta-test
training time. This means that every neuron is active for at least one
class in the meta-test training set. In contrast, directly encouraging
the production of sparse representations creates dead neurons, which
are wasteful, at much higher frequencies [17], providing more evi-
dence that it is better to optimize directly for what we want (learning
without forgetting), rather than optimizing for one thing (sparsity)
and hoping we get an optimal version of something else.

For a randomly chosen meta-training trial and for three differ-
ent example input images (randomly chosen from the meta-test test
set), the activations of the neuromodulatory network and the pre- and
post-neuromodulatory-gating activations of the prediction network

8 Figure available in supplementary material of arXiv manuscript
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Figure 6: 2D t-SNE projections of the latent representations for 10 randomly selected meta-test training classes when the network saw them
for the first time (before any labels are provided). Left: OML representations. Middle: PLN representations before being gated by the neuro-
modulatory network. Right: PLN representations after being gated by the neuromodulatory network. Qualitatively, the post-neuromodulatory
activations provide more well-separated clusters. KNN classification accuracy quantitatively shows the improved accuracy that results from
such separation (see text).

are shown in Fig. 5. This visualization, in combination with the av-
erage activation rate reported above, show that ANML has indeed
learned to produce sparse representations simply through a incentive
to directly maximize continual learning, as OML did [17]. Further-
more, that ANML is more successful at avoiding catastrophic forget-
ting than OML, yet does so with a less sparse representation, suggests
that having sparse representations alone are insufficient. ANML is
able to meta-learn a combination of sparse representations and se-
lective plasticity that together are especially important for continual
learning.

We hypothesize that the neuromodulation networks learns to rec-
ognize different types of images, and creates different selective acti-
vation masks for them. That would, in turn, enable different parts of
the prediction learning network to store information about different
types of images, reducing catastrophic forgetting (recall that selective
activation leads to selective plasticity). A prediction of this hypoth-
esis is that the outputs of the neuromodulatory network should be
different for different types of images (i.e. that it should be possi-
ble to cluster semantically similar images by their neuromodulatory
outputs).

To test this prediction, we use the K-Nearest-Neighbor (KNN) al-
gorithm [10] to predict the class label of images from the meta-test
test set, using the Euclidean distance in the space of NM activations
(labels come from the meta-test training set). The following results
are with K = 5, but the results are qualitatively unchanged across
1 ≤ K ≤ 20).

The result show that the NM outputs enable an accuracy of 70.9%,
which is significantly higher than chance. The accuracy of a neural
network with the same architecture as the NM network, but with ran-
dom weights is 24.3% (p = 2.58 × 10−31). This result confirms
that the NM network has meta-learned the ability to tell apart types
of images, including classes it has never seen before, enabling it to
create different selective activation and plasticity for different types
of images. Interestingly, the separability the neuromodulatory net-
work creates also makes it easier for the prediction network to learn
to solve the task (because the classes are better separated).

Another test of the value of the NM network is if it improves
the representations in the PLN. To test that, we compare KNN
accuracy based on the PLN activations before and after they are
gated by the NM network. The KNN classification accuracy post-
neuromodulation is 81.1%, which significantly outperforms the 57%
classification accuracy of pre-neuromodulation activations (p =
7.87× 10−12).

The improvement to class separability post-neuromodulation can

also be seen visually in 2-D t-SNE [28] projections of the represen-
tation layer activations for 15 instances each of 10 meta-test classes
when the network (resulting from a single randomly chosen meta-
training trial) saw these instances for the first time during meta-
test-training (Fig. 6). The meta-learned representations in the PLN
already do a good job of separating the never-seen-before classes,
which makes it easier to learn to perform the task well. The meta-
learned NM network further increases that separability via selective
activation. That, in turn, creates selective plasticity, causing informa-
tion about each class to be stored in different parts of the network,
reducing catastrophic forgetting.

5 DISCUSSION AND FUTURE WORK

The results above demonstrate ANML’s impressive ability to con-
tinually learn, outperforming the current state-of-the-art approach of
OML on this domain [17]. The results show the promise of meta-
learning selective activations (and by extension, selective plasticity)
to help reduce catastrophic forgetting and enable continual, lifelong
learning in deep neural networks. In future work it would be interest-
ing to study the extent to which ANML and meta-learning in general
improve other aspects of continual learning, such as forward transfer
(being better on future tasks due to prior experience) and backwards
transfer (getting better on previously learned tasks when learning
new tasks). Sequentially-trained ANML even outperforms the i.i.d.
trained OML-Oracle, suggesting that meta-learned neuromodulation
and its resulting selective activations may be powerful for problems
beyond reducing catastrophic forgetting, and represent a powerful ar-
chitecture more generally.

ANML’s absolute performance of 63.8% accuracy on held-out im-
ages from 600 Omniglot classes would not be impressive in an i.i.d.,
multi-epoch, large-training-dataset context. However, it is impres-
sive considering (1) that the data are presented sequentially, includ-
ing over nearly 9,000 SGD updates, (2) that each image is seen just
one time, and (3) that the number of training instances per class is
low (at just 15). ANML’s achievement is clearer when comparing to
the performance of traditional deep learning methods (the Scratch or
Pretrain & Transfer controls) in this difficult task setting.

There are many directions for future work. Initially, while there
is only a 10% drop in performance owing to catastrophic forgetting
(i.e. between the ANML-Oracle and ANML), that still leaves room
for improvement. There is also work to be done in analyzing the im-
plementation choices made during this study, which could further
improve performance. For example, the choice to gate selective ac-
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tivations in just one layer of the prediction network was a simplify-
ing assumption made in this initial exploration, but the methodolog-
ical approach can easily be extended to modulate any and all layers
within the prediction network. Additionally, the technique could be
made more fine-grained. Indeed, during the development of ANML,
a version of neuromodulation was created where every synapse in
the prediction network was gated by the NM network. This version
was competitive with other versions that were tested, but required too
many parameters to be a viable alternative given our current compu-
tational resources. To avoid this explosion in the parameter count,
one could harness indirect encoding, as in HyperNEAT [41], where
a small network can create a geometric pattern (here, of gating) that
can be applied to a larger network. Interestingly, this approach would
also enable the NM network to be able to be applied to prediction
networks of different sizes at meta-test time.

So far ANML has been demonstrated in a situation where each
class/task is simple (learning one Omniglot character type). New re-
search is needed to see how well ANML and ANML-inspired ap-
proaches scale to much more complex tasks. One example is extend-
ing the work to reinforcement learning (RL) tasks. If ANML helps in
that setting it would be important since RL agents naturally encounter
sequential learning environments, and are currently held back by all
of the challenges that come with them. Another dimension of diffi-
culty that can be tested is when the meta-test distribution is different
from the meta-training distribution. If the meta-training distribution
is large enough, it would be interesting to test whether ANML can
learn to continuously learn in a way that generalizes to entirely new
types of tasks that are not in the meta-training set.

Another potentially profitable direction is to hybridize the insights
of ANML with other meta-learning techniques. Two promising ones
are combining ANML with the style of meta-learning wherein the
entire learning algorithm is meta-learned within a recurrent neural
network (either in a supervised [14] or RL context, e.g. RL2 [6]
aka Learning to Reinforcement Learn [43]). Another is combining
ANML with recent work into meta-learning with differentiable Heb-
bian learning [33], including differentiable neuromodulated Hebbian
plasticity [34].

Most broadly, the success of OML and ANML underscore the
power of meta-learning the solutions to the hardest machine learn-
ing problems, such as exploration, safe exploration, generalization,
robustness to adversarial examples, and many more. They thus in-
crease our confidence in paradigms like AI-generating algorithms
(AI-GAs), which advocate learning as much of the solution as possi-
ble [5]. This work focuses on Pillar Two of AI-GAs (meta-learning
learning algorithms). The power of the ANML approach should
only increase when combined with the other pillars of the AI-GA
paradigm, namely architecture search and automatically generating
training environments. Architecture search is especially interesting
to consider with ANML, because there are so many possible archi-
tectures that could be tried and some will likely generate substantial
improvements. We could try to investigate that question manually, or
we could instead turn to architecture search to discover the answer
for us automatically. That will become increasingly attractive as ar-
chitecture search methods improve.

6 CONCLUSION

This work introduces ANML, a method to improve continual learn-
ing by directly optimizing for improved continual learning. Here, we
have demonstrated the benefits of ANML for reducing catastrophic
forgetting. ANML is motivated by the idea that we should meta-learn

the solutions to hard problems, instead of manually engineering ma-
chine learning solutions for them. Specifically, ANML meta-learns
the parameters of a neuromodulatory network that, conditioned on
data, gates the activations of a separate prediction network, creat-
ing selective activation and, in turn, selective plasticity. The results
presented here demonstrate the effectiveness of this approach to re-
duce the amount of catastrophic forgetting relative to traditional and
current state-of-the-art methods at an unprecedented scale, demon-
strating continual learning on trajectories of up to 600 sequentially
learned classes (over 9,000 SGD updates). Although work needs to
be done to test how well ANML works on harder challenges, this
work provides a promising stepping stone towards improved algo-
rithms for continual learning. It also underscores the value of learn-
ing as much of the solution as possible, and thus adds momentum
to the growing perspective that we should meta-learn solutions to
the grand challenges of AI research. That includes pursuing AI-
generating algorithms, which attempt to learn as much as possible
in the pursuit of our community’s grandest ambition: creating artifi-
cial general intelligence.
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